Answer:
Respuesta D
Step-by-step explanation:
Paola afirma: Todo número compuesto par, se puede escribir como la multiplicación de factores primos.
Esta afirmación es cierta, pues es un caso de la afirmación de que todo número natural mayor que uno se puede escribir como multiplicación de números primos. A este proceso se le llama descomposición en factores primos.
Edwin afirma: Todo número compuesto impar se puede escribir como la suma de dos números primos.
Esta afirmación es falsa. Note que al sumar dos números impares de la forma 2k+1 y 2m+1 para k distinto de m, se obtiene

Es decir, la suma de dos números impares es siempre par.
Note que a excepción de 2, todo número primo es impar. Para que esta afirmación fuera cierta, necesariamente tendría que pasar que cualquier número impar k se escriba de la forma p+2 donde p es un número primo. Esto es equivalente que para cualquier número impar k, el número k-2 sea primo.
Basta con dar un ejemplo para ver que esto no pasa. Tomemos k=11. En este caso, k-2 = 9, el cuál no es un número primo. Entonces 11 no se puede descomponer como la suma de dos números primos.
Answer:
Step-by-step explanation:
What two numbers multiply to equal -48, but add to equal -2? The method is multiplying a*c and seeing if they add up to b. Those two numbers are -8 and +6.

Now, factor by grouping

Answer:
y = -13x + 4
Step-by-step explanation:
You want to put it in the form y = mx + b where m is the slope and b is the y-intercept (For example, in the equation y = 2x + 3 the slope is 2 and the y-intercept is 3)
Since the slope is -13, m = -13.
Since the y-intercept is 4, b = 4.
This means the equation is y = -13x + 4
Answer:
Rly lazy man.....
Step-by-step explanation:
1/2*l*w is the area of triangle, plug in values...
1/2*4.5*6.6
14.85 square feet is the area