Answer:
The answer is below
Step-by-step explanation:
A polynominal function that describes an enclosure is v(x)=1500x-x2 where x is the length of the fence in feet what is the maximum area of the enclosure
Solution:
The maximum area of the enclosure is gotten when the differential with respect to x of the enclosure function is equal to zero. That is:
V'(x) = 0
V(x) = x(1500 - x) = length * breadth.
This means the enclosure has a length of x and a width of 1500 - x
Given that:
v(x)=1500x-x². Hence:
V'(x) = 1500 -2x
V'(x) = 0
1500 -2x = 0
2x = 1500
x = 1500 / 2
x = 750 feet
The maximum area = 1500(750) - 750² = 562500
The maximum area = 562500 feet²
Answer:
Adult=58
Step-by-step explanation:
c=child, a=adult
6.4c+9.7a=1145 equation 1
c+a=149 equation 2
a=149-c modified equation 2 to isolate a
6.4c+9.7(149-c)=1145 substitute value of a from equation 1 into equation 2
6.4c+1445.3-9.7c=1145
-3.3c=-300.3
c=91
solve for a
c+a=149
91+a=149
a=58
Check answer:
6.4c+9.7a=1145
6.4(91)+9.7(58)=1145
582.40+562.60=1145
1145=1145
Answer: 2,215,000
Step-by-step explanation:
Given: The quadratic function models the population of a city where x represents the number of years since 2005.
To Find: population of the city in 2010
We need to put x= 2010-2005 = 5
Hence, the estimated population of the city in 201 = 2215 thousands or 2,215,000 .
change yrds to ft
5yds = 5*3 = 15 ft
5yds 2 ft = 15ft + 2ft = 17 ft
6yds = 6 * 3 = 18 ft
6 yds 1 ft = 18 + 1
19 ft
A = l * w
A = 17* 19
A = 323 ft^2
Choice A
The distribution function of the univariate random variable x is continuous at x if and only if , F (x) = P (X ≤ x)
Continuous univariate statistical distributions are functions that describe the likelihood that a random variable, say, X, falls within a given range. Let P (a Xb) represent the probability that X falls within the range [a, b].
A numerically valued variable is said to be continuous if, in any unit of measurement, whenever it can take on the values a and b. If the random variable X can assume an infinite and uncountable set of values, it is said to be a continuous random variable.
If X can take any specific value on the real line, the probability of any specific value is effectively zero (because we'd have a=b, which means no range). As a result, continuous probability distributions are frequently described in terms of their cumulative distribution function, F(x).
To learn more about univariated data
brainly.com/question/13415579
#SPJ4