1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
2 years ago
11

Solve for x. −23(3x−4)+3x=5619/6 A. 19/6 B. 11/6 C. 21/6 D. 29/6

Mathematics
1 answer:
MrRa [10]2 years ago
3 0

Answer:

Step-by-step explanation:

−23(3x−4)+3x=5619/6            Remove brackets on the left. Divide by 6 on the right.

-69x - 92 + 3x = 936.5         Combine like terms on the left.

-66x - 92 = 936.5                 Add 92 to both sides

-66x = 936.5 + 92

-66x = 1028.5                       Divide by -66

x = -15 7/12

You might be interested in
Solve for x going step by step .
OleMash [197]

Answer:

x=11

Step-by-step explanation:

We know that  the angle is equal to 1/2 the difference of the long arc length between where the line segments touch the circle and the small  arc length where the line segments touch the circle

They long distance is 360 - (86+74) = 200

The small distance is 86

4x+13 = 1/2 ( 200  - 86)

4x+13 = 1/2 (114)

4x+13 = 57

Subtract 13 from each side

4x+13-13 = 57-13

4x= 44

Divide by 4

4x/4 = 44/4

x=11

6 0
2 years ago
Find the derivative of ln(secx+tanx)
Sliva [168]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3000160

————————

Find the derivative of

\mathsf{y=\ell n(sec\,x+tan\,x)}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1}{cos\,x}+\dfrac{sin\,x}{cos\,x} \right )}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1+sin\,x}{cos\,x} \right )}


You can treat  y  as a composite function of  x:

\left\{\! \begin{array}{l} \mathsf{y=\ell n\,u}\\\\ \mathsf{u=\dfrac{1+sin\,x}{cos\,x}} \end{array} \right.


so use the chain rule to differentiate  y:

\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(\ell n\,u)\cdot \dfrac{d}{dx}\!\left(\dfrac{1+sin\,x}{cos\,x}\right)}


The first derivative is  1/u, and the second one can be evaluated by applying the quotient rule:

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{\frac{d}{dx}(1+sin\,x)\cdot cos\,x-(1+sin\,x)\cdot \frac{d}{dx}(cos\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(0+cos\,x)\cdot cos\,x-(1+sin\,x)\cdot (-\,sin\,x)}{(cos\,x)^2}}


Multiply out those terms in parentheses:

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos\,x\cdot cos\,x+(sin\,x+sin\,x\cdot sin\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos^2\,x+sin\,x+sin^2\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(cos^2\,x+sin^2\,x)+sin\,x}{(cos\,x)^2}\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}


Substitute back for  \mathsf{u=\dfrac{1+sin\,x}{cos\,x}:}

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{~\frac{1+sin\,x}{cos\,x}~}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{cos\,x}{1+sin\,x}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}


Simplifying that product, you get

\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+sin\,x}\cdot \dfrac{1+sin\,x}{cos\,x}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{cos\,x}}


∴     \boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=sec\,x} \end{array}}\quad\longleftarrow\quad\textsf{this is the answer.}


I hope this helps. =)


Tags:  <em>derivative composite function logarithmic logarithm log trigonometric trig secant tangent sec tan chain rule quotient rule differential integral calculus</em>

3 0
3 years ago
Determine the value of x in the diagram.
Igoryamba
The answer to the question is 114
8 0
3 years ago
Write the inequality shown by the graph with the boundary line
Bingel [31]

Answer:

>=

Step-by-step explanation:

since the shaded area is above the line y must be > or >= 1/4x-4, so the symbol must be > or >=. since the line isn't dashed, points on the line also fit the inequality meaning that the answer is >=

3 0
2 years ago
Solve for x: A=bx+cw
ozzi

Answer:

The answer is x=A-cw/b.

I need to add more characters so don't worry

8 0
2 years ago
Read 2 more answers
Other questions:
  • Can someone help me with number 9 please? thanks
    7·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST!
    5·1 answer
  • 227,940,000 in scientific notation
    12·2 answers
  • a plant is already 43 centimeters tall, it will grow one centimeter every month. Let H be the plant's height (in centimeters) af
    6·1 answer
  • There are more inches on a football field (100 yards) than there are centimeters on a 28 meter basketball court.
    13·1 answer
  • What is the value of x <br> 1.4x + 2.6x = -16
    7·2 answers
  • Can someone please help​
    7·1 answer
  • Period - Integrated Math 1) 1 1 55 56 SR 59 60 61 62 63 64 65 66 SR 59 60 61 62 63 64 65 55 36 ST SR 59 60 61 62 63 64 65 605 SS
    14·1 answer
  • 89.517 +59.84 by first rounding each number to the nearest whole number.
    15·2 answers
  • -6 * -6 + 7 * -6 + 8​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!