As per the problem
Jing spent
of her money on a pack of pens.
of her money on a pack of markers.
and
of her money on a pack of pencils.
Total fraction of money spent cab be given as below
Fraction of Money Spent =
Take the LCD of denominator, we get LCD of (3,2,8)=24
Fraction of Money Spent =

The first step would be D
Answer:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
Step-by-step explanation:
Let the dimensions of the box be x, y and z
The rectangular box has a square base.
Therefore, Volume of the box
Volume of the box

The material for the base costs
, the material for the sides costs
, and the material for the top costs
.
Area of the base 
Cost of the Base 
Area of the sides 
Cost of the sides=
Area of the Top 
Cost of the Base 
Total Cost, 
Substituting 

To minimize C(x), we solve for the derivative and obtain its critical point
![C'(x)=\dfrac{0.6x^3-4.8}{x^2}\\Setting \:C'(x)=0\\0.6x^3-4.8=0\\0.6x^3=4.8\\x^3=4.8\div 0.6\\x^3=8\\x=\sqrt[3]{8}=2](https://tex.z-dn.net/?f=C%27%28x%29%3D%5Cdfrac%7B0.6x%5E3-4.8%7D%7Bx%5E2%7D%5C%5CSetting%20%5C%3AC%27%28x%29%3D0%5C%5C0.6x%5E3-4.8%3D0%5C%5C0.6x%5E3%3D4.8%5C%5Cx%5E3%3D4.8%5Cdiv%200.6%5C%5Cx%5E3%3D8%5C%5Cx%3D%5Csqrt%5B3%5D%7B8%7D%3D2)
Recall: 
Therefore, the dimensions that minimizes the cost of the box are:
(a)Length =2 feet
(b)Width =2 feet
(c)Height=3 feet
<u>Given</u>:
The given triangle is a similar triangle.
The length of the hypotenuse is 18 units.
The length of the leg is a.
The length of the part of the hypotenuse is 16 units.
We need to determine the proportion used to find the value of a.
<u>Proportion to find the value of a:</u>
We shall find the proportion to determine the value of a using the geometric mean leg rule.
Applying the leg rule, we have;

Substituting the values of hypotenuse, leg and part, we get;

Thus, the proportion used to find the value of a is 
Hence, Option D is the correct answer.