Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
Answer:
The equation for the object's displacement is 
Explanation:
Given:
m = 16 lb
δ = 3 in
The stiffness is:

The angular speed is:

The damping force is:

Where
FD = 20 lb
u = 4 ft/s = 48 in/s
Replacing:

The critical damping is equal:

Like cc>c the system is undamped
The equilibrium expression is:

Answer:
b. Jupiter’s greater gravity has compressed the layers, so they are closer together there.
Explanation:
The value for Jupiter mass is 1.8981×10²⁷kg, while the mass of Saturn is 5.6832×10²⁶kg, so the different layers of clouds in Jupiter will be submitted to a greater gravitational pull because it has a bigger mass, as is established in the law of universal gravitation:
(1)
Where m1 and m2 are the masses of two objects, G is the gravitational constant and r is the distance between the two objects.
As it can be seen in equation 1, the gravitational force is directly proportional to the product of the masses of the objects, so if the mass increase the gravitational force will do it too.
For the case of Saturn, it has a lower mass so its layers of clouds will suffer a weaker gravitational pull. That leads to the three clouds being more spacing that the ones of Jupiter.
Answer:
2156 J
Explanation:
From the question,
Work done = Combined mass of the bucket and water×height×gravity.
W = (M+m)hg............................. Equation 1
Where M = mass of water, m = mass of the bucket, h = height, g = acceleration due to gravity.
Given: M = 20 kg, m = 2 kg, h = 10 m
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = (20+2)×10×9.8
W = 22×98
W = 2156 J
2.89watts.
<h3>What is meant by sound intensity?</h3>
- The average rate at which sound energy moves across a unit area normal to a given direction is used to determine a sound's intensity. This rate is generally stated in ergs per second per square centimeter.
- Decibels are the units used to measure sound intensity, often known as sound power or sound pressure. The decibel (dB) unit is named after Alexander Graham Bell, who also created the audiometer and the telephone. An audiometer is a tool to gauge a person's hearing capacity for various noises.
- Our ability to measure the flow of sound energy as a time-averaged vector quantity makes sound intensity measuring an effective method. We can identify sound sources and tell direct sound from reverberant sound in a room using the characteristics of sound intensity.
How much power is radiated as a sound from a band whose intensity is 1.6x10-3 w/m2 at a distance of 12m:
Formula: 
I=1.6x10-3 w/m2
r=12m




To learn more about sound intensity, refer to:
brainly.com/question/17062836
#SPJ9