1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
2 years ago
13

For each scenario below, choose the best graph. (a) Maria bikes from home to work.

Physics
1 answer:
BlackZzzverrR [31]2 years ago
5 0

A line graph that plots either speed or distance against time.

Really, the type of graph depends on what quantity you want the graph to show.

You might be interested in
What controls whether a lava flow is aa or pahoehoe
nevsk [136]

Explanation:

Basaltic lava

Basaltic lava generally takes two distinct forms known by the Hawaiian terms pahoehoe and aa. Pahoehoe has a smooth wavy surface that resembles twisted rope. It advances by extruding molten toes of lava beneath a thin, flexible crust. As it travels pahoehoe lava often changes to blocky flows called aa.

7 0
3 years ago
The infant's tendency to turn its head toward things that touch its cheek is known as the
katovenus [111]

Answer:

I think it is <em><u>Rooting</u></em><em> </em><u><em>Reflex</em></u>

4 0
3 years ago
Read 2 more answers
A spherical capacitor contains a charge of 3.00 nC when connected to a potential difference of 230 V. If its plates are separate
Assoli18 [71]

Answer:

Part(a): the capacitance is 0.013 nF.

Part(b): the radius of the inner sphere is 3.1 cm.

Part(c): the electric field just outside the surface of inner sphere is \bf{2.81 \times 10^{4}~n~C^{-1}}.

Explanation:

We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '\epsilon_{0}' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

C = \dfrac{4 \pi \epsilon_{0}}{(\dfrac{1}{a} - \dfrac{1}{b})}~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

Part(a):

Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.

So the capacitance (C) of the shell is

C &=& \dfrac{Q}{V} = \dfrac{3 \times 10^{-90}~C}{230~V} = 1.3 \times 10^{-11}~F = 0.013~nF

Part(b):

Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

&& \dfrac{1}{a} = \dfrac{1}{b} + \dfrac{1}{C/4 \pi \epsilon_{0}} = \dfrac{1}{0.043} + \dfrac{1}{1.3 \times 10^{-11} \times 9 \times 10^{9}} = 31.79\\&or,& a = \dfrac{1}{31.79}~m = 0.031~m = 3.1~cm

Part(c):

If we apply Gauss' law of electrostatics, then

&& E~4 \pi a^{2} = \dfrac{Q}{\epsilon_{0}}\\&or,& E = \dfrac{Q}{4 \pi \epsilon_{0}a^{2}}\\&or,& E = \dfrac{3 \times 10^{-9} \times 9 \times 10^{9}}{0.031^{2}}~N~C^{-1}\\&or,& E = 2.81 \times 10^{4}~N~C^{-1}

3 0
3 years ago
A 0.73-m aluminum bar is held with its length parallel to the east-west direction and dropped from a bridge. Just before the bar
Tasya [4]

Answer:

A)  B = 5.4 10⁻⁵ T, B) the positive side of the bar is to the West

Explanation:

A) For this exercise we must use the expression of Faraday's law for a moving body

            fem = -  \frac{d \phi }{dt}

            fem = - \frac{d (B l y}{dt}= - B l v- d (B l y) / dt = - B lv

            B = - \frac{fem}{l \ v}

we calculate

             B = - 7.9 10⁻⁴ /(0.73 20)

             B = 5.4 10⁻⁵ T

B) to determine which side of the bar is positive, we must use the right hand rule

the thumb points in the direction of the rod movement to the south, the magnetic field points in the horizontal direction and the rod is in the east-west direction.

Therefore the force points in the direction perpendicular to the velocity and the magnetic field is in the east direction; therefore the positive side of the bar is to the West

4 0
3 years ago
Four equal masses m are so small they can be treated as points, and they are equallyspaced along a long, stiff mass less wire. T
gavmur [86]

The moment of inertia of a point mass about an arbitrary point is given by:

I = mr²

I is the moment of inertia

m is the mass

r is the distance between the arbitrary point and the point mass

The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.

The total moment of inertia of the system is the sum of the moments of each mass, i.e.

I = ∑mr²

The moment of inertia of each of the two inner masses is

I = m(ℓ/2)² = mℓ²/4

The moment of inertia of each of the two outer masses is

I = m(3ℓ/2)² = 9mℓ²/4

The total moment of inertia of the system is

I = 2[mℓ²/4]+2[9mℓ²/4]

I = mℓ²/2+9mℓ²/2

I = 10mℓ²/2

I = 5mℓ²

4 0
3 years ago
Other questions:
  • Frank gives a box of books a push to the right, which makes it slide across his
    15·1 answer
  • The value of efficiency is never 100% or more in practice. why​
    15·1 answer
  • What does the pupil of the eye controls
    8·1 answer
  • an archer stands 40.0m from the target. if the arrow is shot horizontally with a velocity of 90.0 m/s, how far above the bull's
    13·1 answer
  • Read this /https://www.carbonbrief.org/polar-bears-and-climate-change-what-does-the-science-say
    6·1 answer
  • State two environmental problems caused by coal fired power stations
    8·1 answer
  • The primary reason for the path of motion of an object being a smooth curve is: Select an answer and submit. For keyboard naviga
    11·1 answer
  • ____________ is renewable energy source captured using the heat of the Earth.
    10·1 answer
  • Which statement does not describe a characteristic of a good outline?
    15·2 answers
  • You're in your room blasting music with door shut, your mom opens your door. Now music is heard through out your home. this is e
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!