Answer:
The answer is
<h2>

</h2>
Step-by-step explanation:
The midpoint M of two endpoints of a line segment can be found by using the formula
<h3>

</h3>
where
(x1 , y1) and (x2 , y2) are the points
From the question the points are
(7,−2) and (1,−10)
The midpoint is
<h3>

</h3>
We have the final answer as
<h3>

</h3>
Hope this helps you
Answer:
Lateral surface area of the storage shed = 336 ft²
Step-by-step explanation:
The picture is the complete question.
The shed is in the shape of a rectangular prism. The lateral surface area of the storage shed can be calculated below. The lateral area is the sides of the prism.
lateral area of a rectangular prism = 2h (l + w)
where
l = length
h = height
w = width
h = 8 ft
l = 14 ft
w = 7 ft
lateral area of a rectangular prism = 2h (l + w)
lateral area of a rectangular prism = 2 × 8 × (14 + 7)
lateral area of a rectangular prism = 16 (21)
lateral area of a rectangular prism = 336 ft²
Lateral surface area of the storage shed = 336 ft²
Answer:
D
Step-by-step explanation:
trust me
Answer:
75.7°
Step-by-step explanation:
The mnemonic SOH CAH TOA is intended to remind you of the relations between trig functions and sides of a right triangle. You are given all three sides of the triangle, so you can make use of at least two different trig functions to find the missing angle.
Cos = Adjacent/Hypotenuse
Tan = Opposite/Adjacent
__
<h3>cosine</h3>
The hypotenuse is 65, and the side adjacent to the unknown angle is 16. That tells you ...
cos(?) = 16/65
The inverse function is used to find the angle value:
? = arccos(16/65) ≈ 75.7°
__
<h3>tangent</h3>
The side opposite the angle of interest is 63. Then you have ...
tan(?) = 63/16
The inverse function is used to find the angle value:
? = arctan(63/16) ≈ 75.7°
_____
<em>Additional comments</em>
When using trig functions on a calculator, you need to make sure the angle mode is set to what you want. Here, we want angles in degrees, so we have set that as the angle mode. The [DEG] icon in the lower left corner of the display confirms this.
We can't tell what you're supposed to round the value to. The attachment gives enough digits for you to be able to round to whatever precision you need.