The mathematical relationship between wavelength and energy transmission E = hv.
<h3>What is Wavelength and Energy transmission?</h3>
A waveform signal that is carried in space or down a wire has a wavelength, which is the separation between two identical places (adjacent crests) in the consecutive cycles. This length is often defined in wireless systems in metres (m), centimetres (cm), or millimetres (mm) (mm). The wavelength is most frequently described in nanometers (nm), which are units of 10⁻⁹ m, or angstroms (Å), which are units of 10⁻¹⁰ m, for infrared (IR), visible light (UV), and gamma radiation (γ).
The most fundamental aspect of global energy integration is energy transmission. With the flow of electricity produced from coal as well as from hydro, nuclear, wind, and solar energy all being transported through power networks, electric energy transmission is a significant source of energy transport.
Wavelength and frequency are connected to energy in the same way as they are to light. Greater energy is correlated with shorter wavelengths and higher frequencies. Therefore, lower energy is produced by longer wavelengths and lower frequencies. E = hv is the energy equation.
to learn more about wavelength and frequency go to - brainly.com/question/2174631
#SPJ4
Answer:
Explanation:
We shall find the volume of stored gas at atmospheric pressure .
P₁ V₁ = P₂ V₂
15.5 x 10⁶ x .02 = 10⁵ x V₂ ( atmospheric pressure is 10⁵ Pa )
V₂ = 3.1 m³
volume of one balloon = 4/3 x π r³ , r is radius of balloon
= 4/3 π x .11³
= .050658 m³
no of balloon = total volume to be filled / volume of one balloon
= 3.1 / .050658
= 61 .2
= 61
Answer: it is very difficult to remove the inner electrons from an atom because of the strong electrostatic force of attraction by the nucleus. In contrast, it is very easy to remove the outer electrons from an atom because the electrostatic force of attraction from the nucleus is not strong enough to hold the outer electrons hence it is removed.
Answer:
Meteorologists use a variety of tools to help them gather information about weather and climate. Some more familiar ones are thermometers which measure air temperature, anemometers which gauge wind speeds, and barometers which provide information on air pressure.