Answer: An acid is a substance that donates a proton and produces a conjugate base.
Explanation:
According to Bronsted-Lowry theory, an acid is a substance that donates a proton and produces a conjugate base while a base is a molecule or ion which accepts the proton.
An example of Bronsted-Lowry acid and base is Ethanoic acid, CH3COOH and hydroxide ion, OH- respectively as shown in the reaction below
CH3COOH(aq) + OH-(aq) <---> CH3COO-(aq) + H2O(l)
Thus, ethanoic acid acts as an acid by donating a proton to the hydroxide ion which accepts it, thus producing ethanoate ion, CH3COO- as a conjugate base.
The momentum of the red cart before the collision is 0.2 kgm/s and the blue cart is 0.
The momentum of the red cart after the collision is 0.05 kgm/s and the blue cart is 0.15 kgm/s.
The change in momentum of the system of the carts is 0.
<h3>
Initial momentum of the carts before collision</h3>
The momentum of the carts before the collision is calculated as follows;
P(red) = 0.5 kg x 0.4 m/s = 0.2 kgm/s
P(blue) = 1.5 x 0 = 0
<h3>Momentum of the carts after collision</h3>
The momentum of the carts after the collision is calculated as follows;
P(red) = 0.5 x 0.1 = 0.05 kgm/s
P(blue) = 1.5 0.1 = 0.15 kgm/s
<h3>Change in momentum of the carts</h3>

ΔP = (0.05 + 0.15) - (0.2)
ΔP = 0
Learn more about momentum here: brainly.com/question/7538238
i think the answer is electrostatic force hope this helps u stay safe
Answer: In a battery, voltage determines how strongly electrons are pushed through a circuit, much like pressure determines how strongly water is pushed through a hose. Most AAA, AA, C, and D batteries are around 1.5 volts. Imagine the batteries shown in the diagram are rated at 1.5 volts and 500 milliamp-hours.
Explanation: Today "AA" is frequently used as a size designation, irrespective of the battery's electrochemical system. The main numbers used for the most common NiMH and NiCad battery