Answer:
<em>Hello your question is incomplete attached below is the complete question</em>
answer : There is not convincing statistical evidence to suggest that the proportion of customers who order dessert at each restaurant is not the same based on family classification. ( E )
Step-by-step explanation:
To arrive at this conclusion we will determine the Null and alternate hypothesis
<em>H0 : Number that orders dessert is same based on family classification given</em>
<em>Ha : Number that orders dessert is not the same based on family classification given </em>
from the question the p-value of Chi-square test is 0.092 > 0.05 hence we will fail to reject the null hypothesis. therefore we can conclude that
There is not convincing statistical evidence to suggest that the proportion of customers who order dessert at each restaurant is not the same based on family classification
The answer is x=19.
Hope it helps! (:
If one square is divided into 9 smaller equal squares, then they have to be arranged in 3 lines of 3, that is 3 smaller equal squares per side of the original big square. That said, the area of the big square is equal to the multiplication of 3 small squares sides times 3 small squares sides, call x the length of the small squares.
So,
area = 9 = 3x*3x
9x^2 = 9
x^2 = 1
x = 1
therefore the smaller squares have sides of 1 unit
For 1 year, the house appreciates $4375 (3.5% of 125,000). Therefore after 10 years, $4375(10) = $43750. $125,000+ $43750 = $168,750.
Answer:
a
The estimate is 
b
Method B this is because the faulty breaks are less
Step-by-step explanation:
The number of microchips broken in method A is 
The number of faulty breaks of method A is 
The number of microchips broken in method B is 
The number of faulty breaks of method A is 
The proportion of the faulty breaks to the total breaks in method A is


The proportion of the faulty to the total breaks in method B is

For this estimation the standard error is

substituting values


The z-values of confidence coefficient of 0.95 from the z-table is

The difference between proportions of improperly broken microchips for the two breaking methods is mathematically represented as
![K = [p_1 - p_2 ] \pm z_{0.95} * SE](https://tex.z-dn.net/?f=K%20%3D%20%5Bp_1%20-%20p_2%20%5D%20%5Cpm%20z_%7B0.95%7D%20%2A%20SE)
substituting values
![K = [0.08 - 0.07 ] \pm 1.96 *0.0186](https://tex.z-dn.net/?f=K%20%3D%20%5B0.08%20-%200.07%20%5D%20%5Cpm%201.96%20%2A0.0186)

The interval of the difference between proportions of improperly broken microchips for the two breaking methods is
