∠BDC and ∠AED are right angles, is a piece of additional information is appropriate to prove △ CEA ~ △ CDB
Triangle AEC is shown. Line segment B, D is drawn near point C to form triangle BDC.
<h3> What are Similar triangles?</h3>
Similar triangles, are those triangles which have similar properties,i.e. angles and proportionality of sides.
Image is attached below,
as shown in figure
∡ACE = ∡BCD ( common angle )
∡AED = ∡BDC ( since AE and BD are perpendicular to same line EC and make right angles as E and C)
∡EAC =- ∡DBC ( corresponding angles because AE and BD are parallel lines)
Thus, △CEA ~ △CDB , because of the two perpendiculars AE and BD.
Learn more about similar triangles here:
brainly.com/question/25882965
#SPJ1
C=A+B
C₄₁= row=4; column=1
C₄₁=A₄₁+B₄₁
=2(7)-3(4)
=14-12
=2
Answer: C₄₁=2
Answer:
Length = 49.5 unit and width = 49.5 unit
Step-by-step explanation:
Given as , Perimeter of rectangle = 198 unit
so ,as Perimeter of rectangle = 2× ( Length + width)
Or, 198 = 2 × (Length + width)
Or,
= length + width
So, length + width = 99 unit
Now to make area maximum
Length × width = maximum
Or, (99 - width ) × width = maximum
99 Width - width² = maximum Let width = W
Now differentiate both side with respect to W
D(99W - W²)
= 0 as, constant diff is 0
So, 99 - 2w = 0
Or, w = 
Or, w = 49.5 unit and L = 99- 4905 = 49.5 unit Answer
Answer:
Step-by-step explanation:
X= 12