<h3>
Answer: Choice D) 31.2 miles</h3>
This value is approximate.
============================================================
Explanation:
Let's focus on the 48 degree angle. This angle combines with angle ABC to form a 90 degree angle. This means angle ABC is 90-48 = 42 degrees. Or in short we can say angle B = 42 when focusing on triangle ABC.
Now let's move to the 17 degree angle. Add on the 90 degree angle and we can see that angle CAB, aka angle A, is 17+90 = 107 degrees.
Based on those two interior angles, angle C must be...
A+B+C = 180
107+42+C = 180
149+C = 180
C = 180-149
C = 31
----------------
To sum things up so far, we have these known properties of triangle ABC
- angle A = 107 degrees
- side c = side AB = 24 miles
- angle B = 42 degrees
- angle C = 31 degrees
Let's use the law of sines to find side b, which is opposite angle B. This will find the length of side AC (which is the distance from the storm to station A).
b/sin(B) = c/sin(C)
b/sin(42) = 24/sin(31)
b = sin(42)*24/sin(31)
b = 31.1804803080182 which is approximate
b = 31.2 miles is the distance from the storm to station A
Make sure your calculator is in degree mode.
Answer:
Kennan will be from home approximately an hour and 48 minutes.
Step-by-step explanation:
We must know that total time (
) that Keenan will be from home is the sum of run (
), hang out (
) and walk times (
), measured in hours:

If Keenan runs and walks at constant speed, then equation above can be expanded:

Where:
,
- Run and walk distances, measured in miles.
,
- Run and walk speeds, measured in miles per hour.
Given that
,
,
and
, the total time is:

(
)
Kennan will be from home approximately an hour and 48 minutes.
C
1yd^2 = 9ft^2
_____yd^2 = 2700ft^2
2700 / 9 = 300 yd^2