30 * (1+0.06)^5=
30* 1.338225578 = 40.146
he will know 40 words in 5 weeks
For this case we have the following expression:
![2(\sqrt[4]{16x})-2(\sqrt[4]{2y})+3(\sqrt[4]{81x})-4(\sqrt[4]{32y})](https://tex.z-dn.net/?f=2%28%5Csqrt%5B4%5D%7B16x%7D%29-2%28%5Csqrt%5B4%5D%7B2y%7D%29%2B3%28%5Csqrt%5B4%5D%7B81x%7D%29-4%28%5Csqrt%5B4%5D%7B32y%7D%29)
Rewriting the numbers within the roots we have:
![2(\sqrt[4]{2*2*2*2x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3*3*3*3x})-4(\sqrt[4]{2*2*2*2*2y})](https://tex.z-dn.net/?f=2%28%5Csqrt%5B4%5D%7B2%2A2%2A2%2A2x%7D%29-2%28%5Csqrt%5B4%5D%7B2y%7D%29%2B3%28%5Csqrt%5B4%5D%7B3%2A3%2A3%2A3x%7D%29-4%28%5Csqrt%5B4%5D%7B2%2A2%2A2%2A2%2A2y%7D%29)
Then, by properties of powers we have:
![2(\sqrt[4]{2^4x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3^4x})-4(\sqrt[4]{2^42y})](https://tex.z-dn.net/?f=2%28%5Csqrt%5B4%5D%7B2%5E4x%7D%29-2%28%5Csqrt%5B4%5D%7B2y%7D%29%2B3%28%5Csqrt%5B4%5D%7B3%5E4x%7D%29-4%28%5Csqrt%5B4%5D%7B2%5E42y%7D%29)
Then, by radical properties we have:
![2(2\sqrt[4]{x})-2(\sqrt[4]{2y})+3(3\sqrt[4]{x})-4(2\sqrt[4]{2y})](https://tex.z-dn.net/?f=2%282%5Csqrt%5B4%5D%7Bx%7D%29-2%28%5Csqrt%5B4%5D%7B2y%7D%29%2B3%283%5Csqrt%5B4%5D%7Bx%7D%29-4%282%5Csqrt%5B4%5D%7B2y%7D%29)
Rewriting the expression we have:
![4\sqrt[4]{x}-2\sqrt[4]{2y}+9\sqrt[4]{x}-8\sqrt[4]{2y}](https://tex.z-dn.net/?f=4%5Csqrt%5B4%5D%7Bx%7D-2%5Csqrt%5B4%5D%7B2y%7D%2B9%5Csqrt%5B4%5D%7Bx%7D-8%5Csqrt%5B4%5D%7B2y%7D)
Finally, adding similar terms we have:
![(4+9)\sqrt[4]{x}-(2+8)\sqrt[4]{2y}](https://tex.z-dn.net/?f=%284%2B9%29%5Csqrt%5B4%5D%7Bx%7D-%282%2B8%29%5Csqrt%5B4%5D%7B2y%7D)
![13\sqrt[4]{x}-10\sqrt[4]{2y}](https://tex.z-dn.net/?f=13%5Csqrt%5B4%5D%7Bx%7D-10%5Csqrt%5B4%5D%7B2y%7D)
Answer:
The simplified form of the expression is:
![13\sqrt[4]{x}-10\sqrt[4]{2y}](https://tex.z-dn.net/?f=13%5Csqrt%5B4%5D%7Bx%7D-10%5Csqrt%5B4%5D%7B2y%7D)
We have 26 letters and 10 digits.
So, we have 26 choices for the first letter, 25 choices for the second letter (we can't pick the one we already chose), and 10 choices per digit (we can always choose any digit, because we can repeat them).
This leads to a total of

possible car targs.