Answer with explanation:
For, a Matrix A , having eigenvector 'v' has eigenvalue =2
The order of matrix is not given.
It has one eigenvalue it means it is of order , 1×1.
→A=[a]
Determinant [a-k I]=0, where k is eigenvalue of the given matrix.
It is given that,
k=2
For, k=2, the matrix [a-2 I] will become singular,that is
→ Determinant |a-2 I|=0
→I=[1]
→a=2
Let , v be the corresponding eigenvector of the given eigenvalue.
→[a-I] v=0
→[2-1] v=[0]
→[v]=[0]
→v=0
Now, corresponding eigenvector(v), when eigenvalue is 2 =0
We have to find solution of the system
→Ax=v
→[2] x=0
→[2 x] =[0]
→x=0, is one solution of the system.
The sum of two numbers:
x + y = 108
The difference of the same two numbers:
x - y = 78
We can use substitution to figure out x and y:
x - y = 78 can be changed to x = 78 + y
We can plug this into the first equation:
78 + y + y = 108
78 + 2y = 108
2y = 30
y = 15
Now solve for x using any of the two equations. I'll use the first equation since it's easier:
x + 15 = 108
x = 93
Answer:
∠C=90°
∠A=67°
∠B=23°
Step-by-step explanation:
For angle C:
Thales' Theorem states that an angle inscribed across a circle's diameter is always a right angle.
Therefore, since AB is the diameter(hypotenuse) then angle C is the right angle. (90°)
For Angle A:
The measure of arc BC= 134 degrees. We can just use a formula for an inscribed triangle. ∠A = 1/2 (mBC)
∠A= (1/2)134
∠A= 77°
For angle B:
All triangle angles all add up to 180. We can just subtract angles A and C from 180°:
∠B = 180-(90+67)
∠B = 23°