Answer:
![cot x = \frac{cos x}{sin x}](https://tex.z-dn.net/?f=%20cot%20x%20%3D%20%5Cfrac%7Bcos%20x%7D%7Bsin%20x%7D)
![cos x \frac{cos x}{sin x} + sin x](https://tex.z-dn.net/?f=%20cos%20x%20%5Cfrac%7Bcos%20x%7D%7Bsin%20x%7D%20%2B%20sin%20x)
![\frac{cos^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7Bcos%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x)
![sin^2 x + cos^2 x =1](https://tex.z-dn.net/?f=%20sin%5E2%20x%20%2B%20cos%5E2%20x%20%3D1%20)
Solving for
we got
and replacing this we got:
![\frac{1-sin^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1-sin%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x%20)
![\frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%20x%7D%20-%5Cfrac%7Bsin%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x)
![csc x -sin x + sin x = csc x](https://tex.z-dn.net/?f=%20csc%20x%20-sin%20x%20%2B%20sin%20x%20%3D%20csc%20x)
And then the best option for this case would be:
b.csc x
Step-by-step explanation:
For this case we have the following expression given:
![cos x cot x + sin x](https://tex.z-dn.net/?f=%20cos%20x%20cot%20x%20%2B%20sin%20x%20)
We know from math properties that the definition for cot is ![cot x = \frac{cos x}{sin x}](https://tex.z-dn.net/?f=%20cot%20x%20%3D%20%5Cfrac%7Bcos%20x%7D%7Bsin%20x%7D)
If we use this definition we got:
![cos x \frac{cos x}{sin x} + sin x](https://tex.z-dn.net/?f=%20cos%20x%20%5Cfrac%7Bcos%20x%7D%7Bsin%20x%7D%20%2B%20sin%20x)
![\frac{cos^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7Bcos%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x)
Now we can use the following identity:
![sin^2 x + cos^2 x =1](https://tex.z-dn.net/?f=%20sin%5E2%20x%20%2B%20cos%5E2%20x%20%3D1%20)
Solving for
we got
and replacing this we got:
![\frac{1-sin^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1-sin%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x%20)
![\frac{1}{sin x} -\frac{sin^2 x}{sin x} +sin x](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bsin%20x%7D%20-%5Cfrac%7Bsin%5E2%20x%7D%7Bsin%20x%7D%20%2Bsin%20x)
![csc x -sin x + sin x = csc x](https://tex.z-dn.net/?f=%20csc%20x%20-sin%20x%20%2B%20sin%20x%20%3D%20csc%20x)
And then the best option for this case would be:
b.csc x
<u>
</u>
Step-by-step explanation:
-x, -(x+1)
-x-(x+1)=10506
x^2+x-10506=0
Answer:
A: 200 combinations
Step-by-step explanation:
You multiply 4 by 10 to get 40 and then you multiply 40 by 5 to get 200 options
Answer:
this question is some one tough but I will try it