Answer:
The answer is D. Double Helix
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
Answer:
38 ATP
Explanation:
On complete oxidation of one molecule of glucose yields 38 ATP. Break up of energy production is given below:
- During glycolysis 2 ATP and 2 NADH is produced.
- During formation of Acetyl CoA, 2 NADH is produced.
- During Citric Acid Cycle, 2 ATP, 6 NADH, 2 FADH₂ are produced.
Finally during Electron transport chain, reduced coenzymes NADH and FADH₂ oxidised to release ATP. Each NADH produce 3ATP and each FADH₂ produces 2 ATP. Altogether 10 NADH is produced during entire process of cellular respiration which yield 30 ATP and 2 FADH₂ yields 4 ATP. Therefore, on complete oxidation of one molecule of glucose yields 38 ATP.
Answer:
LDNJSIOAG JHDFJI GIRL PLEASE
Explanation:
girl drop them!! u dont deserve them?? they're clearly not ur "bsf" if they take yo man,, KNOW UR WORTH !!