There are 21 ways Tim choose 2 books from the 7 recommended book
<em><u>Solution:</u></em>
Given that Tim must read 2 books from a list of 7 recommended books for his summer reading program
To find: different ways can Tim choose 2 books from the 7 recommended books
This is a combination problem
A combination is a selection of all or part of a set of objects, without regard to the order in which objects are selected
<em><u>The formula for combinations is:</u></em>
![n C_{r}=\frac{n !}{r !(n-r) !}](https://tex.z-dn.net/?f=n%20C_%7Br%7D%3D%5Cfrac%7Bn%20%21%7D%7Br%20%21%28n-r%29%20%21%7D)
where n represents the number of items, and r represents the number of items being chosen at a time
Here we have to choose 2 books from 7 books
Therefore, n = 7 and r = 2
<em><u>Substituting values in above formula, we get</u></em>
![\begin{aligned}&7 C_{2}=\frac{7 !}{2 !(7-2) !}\\\\&7 C_{2}=\frac{7 !}{2 ! \times 5 !}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%267%20C_%7B2%7D%3D%5Cfrac%7B7%20%21%7D%7B2%20%21%287-2%29%20%21%7D%5C%5C%5C%5C%267%20C_%7B2%7D%3D%5Cfrac%7B7%20%21%7D%7B2%20%21%20%5Ctimes%205%20%21%7D%5Cend%7Baligned%7D)
For a number n, the factorial of n can be written as,
![n !=n \times(n-1) \times(n-2) \dots \dots \times 2 \times 1](https://tex.z-dn.net/?f=n%20%21%3Dn%20%5Ctimes%28n-1%29%20%5Ctimes%28n-2%29%20%5Cdots%20%5Cdots%20%5Ctimes%202%20%5Ctimes%201)
Therefore, we get
![7 C_{2}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1}\\\\7C_2 = 7 \times 3 = 21](https://tex.z-dn.net/?f=7%20C_%7B2%7D%3D%5Cfrac%7B7%20%5Ctimes%206%20%5Ctimes%205%20%5Ctimes%204%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%201%7D%7B2%20%5Ctimes%201%20%5Ctimes%205%20%5Ctimes%204%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%201%7D%5C%5C%5C%5C7C_2%20%3D%207%20%5Ctimes%203%20%3D%2021)
Thus there are 21 ways Tim choose 2 books from the 7 recommended book