It will be something like b or d
Explanation:
Water vapour is important for a number of different reasons, but its presence in the atmosphere is one of the most important. Water vapour is present within the atmosphere in varying amounts but is a vital component of the hydrologic cycle. In the atmosphere, water vapour can exist in trace amounts or even make up as much as 4% of the atmosphere. This concentration depends largely on where the water vapour levels are measured. On average, the value of water vapour in the atmosphere is 2-3%. In arid or very cold locations - such as polar regions - the amount of water vapour in the air is much lower.[4]
Even on a clear day, water vapour exists in the atmosphere as an invisible gas - unlike clouds which are droplets of liquid water that can be seen. If the conditions are right, water vapour in the air can collect on small particles of dust, salt, or smoke in the air to form small droplets. These droplets gradually increase in size and over time become various forms of precipitation. Since water vapour is so prominent in the atmosphere and forms precipitation, water vapour is a major component of the hydrologic cycle. When water holding areas are heated by the Sun, some of the water being held evaporates and becomes vapour, powering the cycle.[5]
In addition to being created by evaporating water, plants are capable of producing water vapour through a process of transpiration.
Answer:
the 9 percent claim is demonstrably false on a number of levels. First, the entire brain is active all the time. The brain is an organ. Its living neurons, and the cells that support them, are always doing something. (Where’s the “you only use 9 percent of your spleen” myth?) Joe LeDoux, a professor of neuroscience and psychology at NYU, thinks that people today may be thrown off by the “blobs”—the dispersed markers of high brain activity—seen in functional magnetic resonance imaging (fMRI) of the human brain. These blobs are often what people are talking about when they refer to the brain “lighting up.”
Say you’re watching a movie in an fMRI scanner. Certain areas of your brain—the auditory and visual cortices, for instance—will be significantly more active than others; and that activity will show up as colored splotches when the fMRI images are later analyzed. These blobs of significant activity usually cover small portions of the brain image, often less than 10 percent, which could make it seem, to the casual observer, that the rest of the brain is idling. But, as LeDoux put it to me in an email, “the brain could be one hundred percent active during a task with only a small percentage of brain activity unique to the task.” This kind of imaging highlights big differences in regional brain activity, not everything the brain is doing.
In fact, the entire premise of only “using” a certain proportion of your brain is misguided. When your brain works on a problem—turning light that hits your retina into an image, or preparing to reach for a pint of beer, or solving an algebra problem—its effectiveness is as much a question of “where” and “when” as it is of “how much.” Certain regions of the brain are more specialized than others to deal with certain tasks, and most behavior depends on tight temporal coordination between those regions. Your visual system helps you locate that pint of beer, and your motor system gets your hand around it. The idea that swaths of the brain are stagnant pudding while one section does all the work is silly. The brain is a complex, constantly multi-tasking network of tissue.
Explanation:
1:the malanesian islands ,which include the papua New guinea
Which is closer to australia