Answer: 
<u>Step-by-step explanation:</u>
Convert everything to "sin" and "cos" and then cancel out the common factors.
![\dfrac{cot(x)+csc(x)}{sin(x)+tan(x)}\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)}{1}+\dfrac{sin(x)}{cos(x)}\bigg)\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg[\dfrac{sin(x)}{1}\bigg(\dfrac{cos(x)}{cos(x)}\bigg)+\dfrac{sin(x)}{cos(x)}\bigg]\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)cos(x)}{cos(x)}+\dfrac{sin(x)}{cos(x)}\bigg)](https://tex.z-dn.net/?f=%5Cdfrac%7Bcot%28x%29%2Bcsc%28x%29%7D%7Bsin%28x%29%2Btan%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%5B%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29cos%28x%29%7D%7Bcos%28x%29%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29)


Answer:
3.6 minutes.
Step-by-step explanation:
According to the data given in the question, between 9 and 10 AM, 220 passengers have checked in which means that the check-in rate is 3.6 passengers per minute. If the average number of passengers waiting for check-in is 32 and if we assume that the check-in rate is constant throughout the day, then the average passenger had to wait in line for 3.6 minutes.
Answer:
C
Step-by-step explanation:
It is right
There are 8 tenths in the sum. .65+.24 is .89. tenths are the first digit to the right of the decimal. 80 and 8x10=80
<h3>Answer:</h3>
x/tan(x) is an even function
sec(x)/x is an odd function
<h3>Explanation:</h3>
<em>x/tan(x)</em>
For f(x) = x/tan(x), consider f(-x).
... f(-x) = -x/tan(-x)
Now, we know that tan(x) is an odd function, so tan(-x) = -tan(x). Using this, we have ...
... f(-x) = -x/(-tan(x)) = x/tan(x) = f(x)
The relation f(-x) = f(x) is characteristic of an even function, one that is symmetrical about the y-axis.
_____
<em>sec(x)/x</em>
For g(x) = sec(x)/x, consider g(-x).
... g(-x) = sec(-x)/(-x)
Now, we know that sec(x) is an even function, so sec(-x) = sec(x). Using this, we have ...
... g(-x) = sec(x)/(-x) = -sec(x)/x = -g(x)
The relation g(-x) = -g(x) is characeristic of an odd function, one that is symmetrical about the origin.