4x3+2 = 14/3 —> 56/12
1x4+3 = 7/4 —> 21/12
56-21 is equal to 35/12
Which is 2 and 11/12
Answer:
The derivative is

Step-by-step explanation:
The function is given by

Differentiate with respect to x, we get

Answer:
135°
Step-by-step Explanation:
==>Given:
An inscribed quadrilateral ABCD with,
m<A = (3x +6)°
m<C = (x + 2)°
==>Required:
measure of angle A
==>Solution:
First, let's find the value of x.
Recall that the opposite angles in any inscribed quadrilateral in a circle are supplementary.
Therefore, this means m<A + m<C = 180°
Thus, (3x+6) + (x+2} = 180
3x + 6 + x + 2 = 180
Collect like terms:
3x + x + 6 + 2 = 180
4x + 8 = 180
Subtract 8 from both sides:
4x + 8 - 8 = 180 - 8
4x = 172
Divide both sides by 4:
4x/4 = 172/4
x = 43
We can now find m<A = (3x + 6)°
m<A = 3(43) + 6
= 129 + 6
measure of angle A = 135°
Answer:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
![V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BMultiplying%20both%20sides%20by%203%2F4%20we%20get%7D%5C%5C%5C%5C%5Cfrac%7B3V%7D%7B4%7D%20%3D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BDividing%20both%20sides%20by%20%7D%20%5Cpi%20%5C%5C%5C%5C%20%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%20%3D%20r%5E%7B3%7D%5C%5C%5C%5C%5Ctext%7BTakeing%20cube%20root%20of%20both%20sides%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D%20%3D%20r)
Therefore:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)