The distance between point on the ground from the top of the building is 396 meter, if the building is 280 m high and The angle of depression from the top of a building to a point on the ground is 45 degrees.
Step-by-step explanation:
The given is,
The angle of depression from the top of a building to a point on the ground is 45 degrees.
Height of the building is 280 meter.
Step: 1
Given diagram is a right angled diagram,
For right angle triangle,
90° = 45° + 45°
= 90°
Trignometric ratio,
sin ∅ =
....................(1)
For the above ratio take the bottom angle, that is angle of depression from the top of a building to a point on the ground is 45 degrees.
Where, Opp side = 280 meters
Hyp side = x
∅ = 45°
Equation (1) becomes,
sin 45° = 
0.70710678 = 
x = 
x = 395.979
Distance between point on the ground from the top of the building, x ≅ 396 meter
Trignometric ratio,
cos ∅ =
Cos 45 =
Adj = (0.70710678)(396)
Bottom length, Adj = 280 meter
Result:
The distance between point on the ground from the top of the building is 396 meter.
A linear equation is RISE over RUN (y/x) so the starting point would be -6 and from there its a straight line across
f(x) = 2x
g(x) = x + 3
First let us find (fog)(x)
<span />
(fog)(x) = f(g(x)
= f(x+3)
= 2(x+3)
= 2x + 6
==> (fog)(x) = 2x + 6
Now let us find (gof)(x):
(gof)(x) = g(f(x)
= g(2x)
= 2x + 3
==> <span>(gof)(x) = 2x + 3</span>
Answer:
The translated function can be written as:
y = f(x) + 4