The area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
<h3>Determining the perimeter and area of the triangle giving line equation</h3>
In order to determine the area and perimeter of the lines, we will plot the giving lines, determine the point of intersection and then use the Pythagoras theorem to determine the dimension of the right triangle.
The points of intersection of the line are;
(x₁, y₁) = (- 0.4, 5.2),
(x₂, y₂) = (-0.8, 4.4),
(x₃, y₃) = (0, 4)
Determine the base
b² = c² -a²
b = √(-0.8)² + (4 - 4.4)²
b = 2√5 / 5
Determine the height
h = √((- 0.4) - (- 0.8))² + (5.2 - 4.4)²
height = 2√5 / 5
For the hypotenuse
r = √2 · b
r = 2√10 / 5
<h3>Determine the Perimeter and area</h3>
Perimeter = s1+s2+s3
Perimeter = 2√5 / 5 + 2√5 / 5 + 2√10 / 5
Perimeter = (2√10 + 4√5) / 5 units
<u>For the area</u>
area = 1/2* base * height
A = 0.5 · (2√5 / 5) · (2√5 / 5)
A = 2/5 square units
Hence the area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
Learn more on area and perimeter of triangles here: brainly.com/question/12010318
#SPJ1
By definition, a polynomial is an expression with more than one term. That is a monomial. We have names for 2-termed polynomials (binomials) and 3-termed polynomials (trinomials), but that's where the naming stops and they all are called polynomials after that. Our degree is the same as the highest exponent. So our degree is a fifth degree. The leading coefficient is the number that starts out the whole polynomial AS LONG AS IT IS IN STANDARD FORM. If our polynomial started with the -4x^4, our leading coefficient would NOT be -4 since the highest degree'd term will always come first in standard form. Your choice for your answer is the first one given. Degree: 5 Leading Coefficient: -13.
Answer:
D. 564.44 cm^3
Step-by-step explanation:
V = (1/3)(pi)r^2h
V = (1/3)(3.14159)(7 cm)^2(11 cm)
V = 564.44 cm^3
I got the wrong answer. I don't want to keep this up just in case anyone needs the answer to this question again. But I can't delete my answer so I'll just leave this. Have a nice day tho. Sorry about that :(
Alternate Interior Angles. You’re welcome