Answer:
2 cm and 6 cm.
Explanation:
The maximum displacement of first square wave pulse is 4 cm and the maximum displacement of second square wave pulse is 2 cm. We need to find a possible displacement of the string when the wave pules overlap.
It could be result in constructive interference or destructive interference.The possible displacement of the string are :
4 cm - 2 cm = 2 cm
4 cm + 2 cm = 6 cm
Hence, the correct options are (A) and (C).
We want to find the work done and power exerted, let’s start with work first.
We know that the equation for work is: W = F * D. We need to find the force which we can find by using: F = M * A.
Mass: 300kg
Acceleration (using equation from photo): 1.25 m/s^2
(The equation says x but can be used with y values)
If you are confused about how I found the acceleration; I plugged in 2.5 for the final y value, 0 for the initial y value, 0 for the initial velocity and 4 for t squared.
To solve, for acceleration it’s a matter of simple algebra. You can subtract the initial y position and the initial velocity from the final y position because they are 0. This leaves you with 2.5 m = 1/2a * t^2, from here I multiplied 2.5 by 2 to get rid of the 1/2. Now I have 5 = a * t^2. T^2 is just 2 squared, so four. Simply divide 5 by 4, and boom, you get 1.25 m/s^2.
Force = 300 kg * 1.25 m/s^2 = 375 Newtons
So, work = 500 N * 2.5 m = 1000 Joules
Power: W/t
So, Power = 1000 J / 2 seconds = 500 Watts
Hope this helps!
Answer:
B. less
Explanation:
acceleration due to gravity on Earth, g = 9.8 m/s²
acceleration due to gravity on Moon, g = 1.6 m/s²
Given mass of the object as, m = 5 kg
Weight of an object is given as, W = mg
Weight of the object on Earth, W = 5 x 9.8 = 49 N
Weight of the object on Moon, W = 5 x 1.6 = 8 N
Therefore, the object weighs less on the moon compared to its weight on Earth.
The correct option is "B. less"
Answer:
yes. We will have the same displacement.
Explanation:
It's in the definition of a displacement that " displacement is the change in position and if the initial and final position is same then the displacement will be zero". So in the park from starting position if we end up walking at the same position then our displacement will be zero because our initial and final positions are same.
Answer:
Traditional methods of measurement involve methods like measurement using the arm, foot or hand span of a particular person which can and does varies form person to person and hence can't be reliable while the standard methods have a fixed standard value which is universal and same for everybody and every place and ..