Answer:
The extension of the wire is 0.362 mm.
Explanation:
Given;
mass of the object, m = 4.0 kg
length of the aluminum wire, L = 2.0 m
diameter of the wire, d = 2.0 mm
radius of the wire, r = d/2 = 1.0 mm = 0.001 m
The area of the wire is given by;
A = πr²
A = π(0.001)² = 3.142 x 10⁻⁶ m²
The downward force of the object on the wire is given by;
F = mg
F = 4 x 9.8 = 39.2 N
The Young's modulus of aluminum is given by;

Where;
Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

Therefore, the extension of the wire is 0.362 mm.
Answer:
if its arrow from netflix it will never miss if its robin hood he will get your wallet count if its eagle eye from avengers he will never miss either but will get you with a tricky arrow
Answer:
B. 7.07 m/s
Explanation:
The velocity of the stone when it leaves the circular path is its tangential velocity,
, which is given by

where
is the angular speed and
is the radius of the circular path.
is given by

where
is the frequency of revolution.
Thus

Using values from the question,

<em>Note the conversion of 75 cm to 0.75 m</em>

The matter from the explosion can reach him, hitting him. He should be able to feel that.
If this case could ever happen, the speed would follow from this formula:

with f the frequency and lambda the wavelength. We are give a wavelength of 10m. The frequencies of the visible light can range between 400 to about 790 Terahertz, so let us pick a middle point of 600 THz ("green-ish") as a "representative."

The speed of such a wave would have to be 6e+15 m/s (which would be 7 orders of magnitude higher than the universal speed of light constant)