Answer:
Option D)R: {0 ≤ y ≤ 360}; The range represents the number of miles the car can travel
Step-by-step explanation:
The table in the attached figure
Let
x -----> the amount of gas used in gallons (independent variable)
y ----> the number of miles the car can travel (dependent variable)
In this problem
The domain is the interval -----> [0,12]

The range is the interval ----> [0,360]

Minuim i think because maximum is not right
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
Answer:
Podemos hacer la conversión entre [\text{H}^+][H
+
]open bracket, start text, H, end text, start superscript, plus, end superscript, close bracket y \text{pH}pHstart text, p, H, end text mediante las siguientes ecuaciones:
\begin{aligned}\text{pH}&=-\log[\text{H}^+]\\ \\ [\text H^+]&=10^{-\text{pH}}\end{aligned}
pH
[H
+
]
=−log[H
+
]
=10
−pH
Answer:
50 + 25 + (8*5) - (7 + 4)
Step-by-step explanation:
50 + 25 + (8*5) - 7 + 4 = 50 + 25 + 40 - 7 + 4
= 115 - 7 + 4
= 108 + 4
= 112