Answer:
1.3445367773335334434333233332
The "sample" with "mean absolute deviation" indicate about a sample mean absolute deviation is being used as an estimator of the mean absolute deviation of a population
- Mean of the sample MAD=3.3
- Population MAD =6.4
<h3>What does this indicate about a sample mean absolute deviation used as an estimator of the mean absolute deviation of a population?</h3>
Generally, The MAD measures the average dispersion around the mean of a given data collection.

In conclusion, for the corresponding same to mean
the sample mean absolute deviation
7,7 ↔ 0
7,21 ↔ 7
7,22 ↔ 7.5
21,7 ↔ 7
21,21 ↔ 0
21,22 ↔ 0.5
22,7 ↔ 7.5
Therefore
- Mean of the sample MAD=3.3
- Population MAD =6.4
Read more about mean absolute deviation
brainly.com/question/10528201
#SPJ1
Answer:
130
Step-by-step explanation:
You want the determinant of the matrix ...
![\left[\begin{array}{ccc}4&3&2\\-3&1&5\\-1&-4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%263%262%5C%5C-3%261%265%5C%5C-1%26-4%263%5Cend%7Barray%7D%5Cright%5D)
One way to figure it is as the difference between the sum of products of the down-diagonals and the sum of products of the up-diagonals:
D = (4)(1)(3) +(3)(5)(-1) +(2)(-3)(-4) -(-1)(1)(2) -(-4)(5)(4) -(3)(-3)(3)
= 12 -15 +24 +2 +80 +27
D = 130
The determinant of the coefficient matrix is 130.
_____
Many scientific and graphing calculators and web sites can perform this calculation for you.
1) 16
2) 2
3) 6
4) 70
5) 9
6) 15
7) 20