Answer:
1. polarity
2. hydrogen bonding
3. High heat capacity
4. Adhesion
5. polarity
6. surface tension
7. high heat vaporization
8. hydrogen bonds form a rigid and stable network
9. Water is a polar substance and fat is a nonpolar substance.
10. Cohesion
Explanation:
Water is a polar molecule that is held together by hydrogen bonds to form strong cohesive forces. This accounts for the surface tension in water. Surface tension is the force acting on water that it makes to behave like a stretched elastic skin.
The polarity of water accounts for the fact that it is found in several parts of the body where it largely plays the role of a polar solvent.
High heat capacity of water enables it to function well in the area of thermoregulation in the body. High heat vaporization accounts for the fact that water helps maintain extreme temperature changes in an area.
When in solid state, the hydrogen bonded network in water becomes rigid and forms a very stable network of water molecules. Being polar, water does not interact with fat because like dissolves like.
In plants, the attachment of water to plant roots is known as adhesion and is necessary for the capillary movement of nutrients to plants via the root.
Answer:
A. Hemodialysis
Explanation:
Hemodialysis is the method or process of using a dialysis machine (a special machine) to clean the blood.
This is done by doing a minor surgery on the patient to get the blood into the dialyzer.
This dialysis machine does the work a healthy kidney would do.
Answer:climate change
mess extinction involves many species of a short period of geologic time
most mammals being nocturnal allowing them to see better in the dark and conditions
The emergence of extinction of species
individuals that can’t adapt are dying and species are going extinct
Explanation:took test
Answer:
Each mutant would be mated to wild type and to every other mutant to create diploid strains. The diploids would be assayed for growth at permissive and restrictive temperature. Diploids formed by mating a mutant to a wild type that can grow at restrictive temperatures identify the mutation as recessive. Only recessive mutations can be studied using complementation analysis. Diploids formed by mating two recessive mutants identify mutations in the same gene if the diploid cannot grow at restrictive temperature (non-complementation), and they identify mutations in different genes if the diploids can grow at restrictive temperature (complementation).
Explanation:
Recessive mutations are those whose phenotypic effects are only visible in homo-zygous individuals. Moreover, a complementation test is a genetic technique used to determine if two different mutations associated with a phenotype colocalize in the same <em>locus</em> (i.e., they are alleles of the same gene) or affect two different <em>loci</em>. In diploid (2n) organisms, this test is performed by crossing two homo-zygous recessive mutants and then observing whether offspring have the wild-type phenotype. When two different recessive mutations localize in different <em>loci</em>, they can be considered as 'complementary' since the heterozygote condition may rescue the function lost in homo-zygous recessive mutants. In consequence, when two recessive mutations are combined in the same genetic background (i.e., in the same individual) and they produce the same phenotype, it is possible to determine that both mutations are alleles of the same gene/<em>locus</em>.
75% it will be RR or Rr and will have red eyes 25% it will have rr with different colored eyes.