Answer:
12.1 cm
Step-by-step explanation:
Using the law of sines, we can find angle C. Then from the sum of angles, we can find angle B. The law of sines again will tell us the length AC.
sin(C)/c = sin(A)/a
C = arcsin((c/a)sin(A)) = arcsin(8.2/13.5·sin(81°)) ≈ 36.86°
Then angle B is ...
B = 180° -A -C = 180° -81° -36.86° = 62.14°
and side b is ...
b/sin(B) = a/sin(A)
b = a·sin(B)/sin(A) = 13.5·sin(62.14°)/sin(81°) ≈ 12.0835
The length of AC is about 12.1 cm.
_____
<em>Comment on the solution</em>
The problem can also be solved using the law of cosines. The equation is ...
13.5² = 8.2² +b² -2·8.2·b·cos(81°)
This is a quadratic in b. Its solution can be found using the quadratic formula or by completing the square.
b = 8.2·cos(81°) +√(13.5² -8.2² +(8.2·cos(81°))²)
b = 8.2·cos(81°) +√(13.5² -(8.2·sin(81°))²) . . . . . simplified a bit
Answer:
0.075758 miles per minute
Step-by-step explanation:
3600 divided by 9 = 400
400 ft = 0.075758 miles
Answer:
$633,493
Step-by-step explanation:
A)


b)
since QR=QP, that means that QO is an angle bisector, and thus the segments it makes at the bottom of RO and OP, are also equal, thus RO=OP
thus, since the point P is 0.5 units away from the 0, point R is also 0.5 units away from 0 as well, however, is on the negative side, thus R (-0.5, 0)
c)
what's the equation of a line that passes through the points (-0.5, 0) and (0,2)?

Go up six on the y intercept. Then from 6 go up 1 and over 4.