Considerando las fórmulas para el perímetro y el área de un rectángulo, hay que se chega en una <u>eccuación cuadrática sin solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
<h3>¿Cuál es la fórmula para el perímetro y el área de un rectángulo?</h3>
Considerando que las dimensiones son l y w, hay que:
- El perímetro es: P = 2(l + w).
El <u>perímetro es de 18 m</u>, o sea:
2(l + w) = 18
l + w = 9
l = 9- w.
El <u>área es de 21 m²</u>, o sea:
lw = 21
(9- w)w = 21
-w² + 9 - 21 = 0
w² - 9w + 21 = 0
El discriminante es dado por:
D = 9² - 4 x 1 x 21 = -3.
El discriminante negativo implica que la <u>eccuación cuadrática no tiene solución</u>, o sea, las medidas no son posibles y la persona estaba mintiendo.
Puede-se aprender más a cerca de el perímetro y el área de un rectángulo en brainly.com/question/26475963
#SPJ1
Ok if you show me the question I can try to help but you got to show it
Answer:
54
Step-by-step explanation:
I'm assuming the equation looks like this: 15x - 6
15*4 - 6
60 - 6
54
OR if it's just x-6 then the answer is -2
Hope this is what you were asking, have a nice day! :)
Answer:
the scale factor is 3/4
x = 16×3/4 = 12
Step-by-step explanation:
the only side length we have for both triangles is the short left side.
we see that we get ED from SR and need to transform 4 into 3. how do we do that ?
well,
4×f = 3
f = 3/4
that is the scaling factor, as all side lengths in EDF are created by multiplying the corresponding side in SRT by the same scaling factor (3/4).
therefore,
x = EF = ST×f = 16×3/4 = 4×3 = 12
Answer: The distance between the girls is 362.8 meters.
Step-by-step explanation:
So we have two triangle rectangles that have a cathetus in common, with a length of 160 meters.
The adjacent angle to this cathetus is 40° for Anna, then the opposite cathetus (the distance between Anna and the tower) can be obtained with the relationship:
Tan(A) = opposite cath/adjacent cath.
Tan(40°) = X/160m
Tan(40°)*160m = 134.3 m
Now, we can do the same thing for Veronica, but in this case the angle adjacent to the tower is 55°
So we have:
Tan(55°) = X/160m
Tan(55°)*160m = X = 228.5 m
And we know that the girls are in opposite sides of the tower, so the distance between the girls is equal to the sum of the distance between each girl and the tower, then the distance between the girls is:
Dist = 228.5m + 134.3m = 362.8m