Because I've gone ahead with trying to parameterize
directly and learned the hard way that the resulting integral is large and annoying to work with, I'll propose a less direct approach.
Rather than compute the surface integral over
straight away, let's close off the hemisphere with the disk
of radius 9 centered at the origin and coincident with the plane
. Then by the divergence theorem, since the region
is closed, we have

where
is the interior of
.
has divergence

so the flux over the closed region is

The total flux over the closed surface is equal to the flux over its component surfaces, so we have


Parameterize
by

with
and
. Take the normal vector to
to be

Then the flux of
across
is




We have been given a parent function
and we need to transform this function into
.
We will be required to use three transformations to obtain the required function from
.
First transformation would be to shift the graph to the right by 4 units. Upon using this transformation, the function will change to
.
Second transformation would be to compress the graph vertically by half. Upon using the second transformation, the new function becomes
.
Third transformation would be to shift the graph upwards by 5 units. Upon using this last transformation, we get the new function as
.
Answer:
104 Pages
Step-by-step explanation:
on Monday she reads 3/8 of the novel which means
x 352 = 132 pages
on Tuesday she reads 28 pages, doesn't require any calculations.
on Wednesday she reads 1/4 of the novel,
x 352 = 88
Just add all of that,
132+28+88=248 Pages
Subtract the novel pages by the read pages value
352-248=104pages.