Answer:
there are 28 quarters and 13 nickels
Step-by-step explanation:
Answer:
1) 2x+7
2) -3x+11
3) 0.75x-2
4) -2x+0
5) -1.5x+2
6) -4x+16
Step-by-step explanation:
1) y = mx + c
m = 2 when x=1 , y=9
9 = 2(1)+c
c = 7
y = 2x + 7
2) m = -3
When x=4, y= -1
-1 = -3(4) + c
c = -1+12 = 11
y = -3x + 11
3) m = 0.75
When x= -4, y= -5
-5 = 0.75(-4) + c
-5 = -3 + c
c = -2
y = 0.75x - 2
4) m = (y2-y1)/(x2-x1)
m = (2-(-6))/(-1-3) = 8/-4 = -2
y = -2x + c
When x= -1, y= 2
2 = -2(-1) + c
2 = 2 + c
c = 0
y = -2x + 0
5) m = (-10-(-4))/(8-4)
m = (-10+4)/4 = -6/4 = -1.5
y = -1.5x + c
When x= 4, y= -4
-4 = -1.5(4) + c
-4 = -6 + c
c = 2
y = -1.5x + 2
6) m = (-4-4)/(5-3) = -8/2 = -4
When x= 3, y= 4
4 = -4(3) + c
4 = -12 + c
c = 16
y = -4x + 16
Answer:
To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3.
Hey Ive taken this assesment. The answer is 55
Answer:

Step-by-step explanation:
<u>Given:</u>
The Dimensions of Parallelogram are 12 in.(Base) and 7 in.(Height)
<em>And,</em>
The Dimensions of Rectangle are 9 in.(Length) and 5 in.(Breadth).
<u>To Find</u>:
The Area of Shaded region
<u>Solution:</u>
When the dimensions of parallelogram and the dimensions of rectangle are given, we need to find the Shaded region using this formula:

We know that the formula of Parallelogram is base*height[b×h] and the formula of rectangle is length*breadth[l*b] .

Put their values accordingly:

<u>Simplify it.</u>
<em>[</em><em>Follow BODMAS Rule strictly while </em><em>simplifying]</em>


Hence, the Area of Shaded region would be 39 in² or 39 sq. in. .

I hope this helps!