Answer:
Vertical Asymptote:

Horizontal asymptote:
it does not exist
Step-by-step explanation:
we are given

Vertical asymptote:
we know that vertical asymptotes are values of x where f(x) becomes +inf or -inf
we know that any log becomes -inf when value inside log is zero
so, we can set value inside log to zero
and then we can solve for x

we get

Horizontal asymptote:
we know that
horizontal asymptote is a value of y when x is +inf or -inf
For finding horizontal asymptote , we find lim x-->inf or -inf



so, it does not exist
Answer:
Please Find the solution below
Step-by-step explanation:
Let us say the two equations are
x+y=5 --------------(A)
x-y=1 -------------(B)
Let us solve them for x and y by adding them
2x=6
x=3
Hence from (A)
3+y=5
y=2
Hence our solution is
x=3, y=2
Adding same number to equation (A) say 2 we get
x+y+2=5+2
x+y=5+2-2
x+y=5
Hence equation remains the same while adding same number to each side.
Same thing happens if we add same number to equation (B)
Hence we draw the conclusion that the solution remains the same if same number is added to each side of the original equation.
Where is the graph? Could you attach it somewhere