1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
3 years ago
14

28 is equal to how many tenths?

Mathematics
2 answers:
Mice21 [21]3 years ago
8 0

Answer:

280 I believe

Step-by-step explanation:

Tamiku [17]3 years ago
3 0

Answer:2.8

Step-by-step explanation: 20=2 and 8=.8

You might be interested in
What is 33 1/3% as a decimal? NOW!!!
Anna35 [415]

Answer:

0.333333 repeating

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Geometry help what is it will give brainliest
Lapatulllka [165]
For this problem, we can say that corresponding angles are congruent, or the same, this also means that their angle measures have to be the same. Then, our equations for our angles will be vertical angles, which means that they must equal each other. So we would then write our equation as 3x+20=4x+10 or 4x+10=3x+20. Then, to combine like terms, we will subtract 3x from both sides, resulting in x+10=20. Then we will subtract 10 from both sides, resulting in x=10.
5 0
3 years ago
Add [1/-4 3/5] [-2/6 -2/4]
brilliants [131]

Answer:

​25/138

Step-by-step explanation:

1 Convert 4\frac{3}{5}4

​5

​

​3

​​  to improper fraction. Use this rule: a \frac{b}{c}=\frac{ac+b}{c}a

​c

​

​b

​​ =

​c

​

​ac+b

​​ .

\frac{1}{-(\frac{4\times 5+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​4×5+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

2 Simplify  4\times 54×5  to  2020.

\frac{1}{-(\frac{20+3}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​20+3

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

3 Simplify  20+320+3  to  2323.

\frac{1}{-(\frac{23}{5})}(-\frac{2}{6}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​6

​

​2

​​ −

​4

​

​2

​​ )

4 Simplify  \frac{2}{6}

​6

​

​2

​​   to  \frac{1}{3}

​3

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{2}{4})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​4

​

​2

​​ )

5 Simplify  \frac{2}{4}

​4

​

​2

​​   to  \frac{1}{2}

​2

​

​1

​​ .

\frac{1}{-(\frac{23}{5})}(-\frac{1}{3}-\frac{1}{2})

​−(

​5

​

​23

​​ )

​

​1

​​ (−

​3

​

​1

​​ −

​2

​

​1

​​ )

6 Find the Least Common Denominator (LCD) of \frac{1}{3},\frac{1}{2}

​3

​

​1

​​ ,

​2

​

​1

​​ . In other words, find the Least Common Multiple (LCM) of 3,23,2.

LCD = 66

7 Make the denominators the same as the LCD.

-\frac{1\times 2}{3\times 2}-\frac{1\times 3}{2\times 3}−

​3×2

​

​1×2

​​ −

​2×3

​

​1×3

​​

8 Simplify. Denominators are now the same.

-\frac{2}{6}-\frac{3}{6}−

​6

​

​2

​​ −

​6

​

​3

​​

9 Join the denominators.

\frac{-2-3}{6}

​6

​

​−2−3

​​

10 Simplify  -\frac{1}{3}-\frac{1}{2}−

​3

​

​1

​​ −

​2

​

​1

​​   to  -\frac{5}{6}−

​6

​

​5

​​ .

\frac{1}{-(\frac{23}{5})}\times \frac{-5}{6}

​−(

​5

​

​23

​​ )

​

​1

​​ ×

​6

​

​−5

​​

11 Move the negative sign to the left.

-\frac{1}{\frac{23}{5}}\times \frac{-5}{6}−

​

​5

​

​23

​​

​

​1

​​ ×

​6

​

​−5

​​

12 Invert and multiply.

-\frac{5}{23}\times \frac{-5}{6}−

​23

​

​5

​​ ×

​6

​

​−5

​​

13 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}

​b

​

​a

​​ ×

​d

​

​c

​​ =

​bd

​

​ac

​​ .

-\frac{5\times -5}{23\times 6}−

​23×6

​

​5×−5

​​

14 Simplify  5\times -55×−5  to  -25−25.

-\frac{-25}{23\times 6}−

​23×6

​

​−25

​​

15 Simplify  23\times 623×6  to  138138.

-\frac{-25}{138}−

​138

​

​−25

​​

16 Move the negative sign to the left.

-(-\frac{25}{138})−(−

​138

​

​25

​​ )

17 Remove parentheses.

\frac{25}{138}

​138

​

​25

​​

7 0
3 years ago
When a person is breathing normally the amount of air in their lawns varies sinusoidally. When full Karen’s lungs hold 2.8 L of
makkiz [27]

Answer:

A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6

Step-by-step explanation:

Let the function of quantity in the lung of air be A(t)

So A(t) \alpha \sin (\frac{t - \alpha }{k} )

so, A(t) = Amax sin t + b

A(t) = 2.8t⇒ max

A(t) = 0.6t ⇒ min

max value of A(t) occur when sin(t) = 1

and min value of A(t) = 0

So b = 0.6

and A(max) = 2.2

A(t) = 2.2\sin \frac{(t)}{k} + 0.6

at t = 2 sec volume of a is 0.6

So function reduce to

A(t) = 2.2\sin \frac{(t - 2)}{k} + 0.6

and t = 5 max value of volume is represent

so,

\sin \frac{t - \alpha }{k} = 1

\frac{t - 2}{k} = \frac{\pi }{2} when t = 5

\frac{6}{\pi } = k

so the equation becomes

A(t) = 2.2\sin \frac{(t - 2)\pi }{6} + 0.6

7 0
3 years ago
Help please !!!!!!!!!!
jeyben [28]
I posted what I have in the other post it's same question
7 0
3 years ago
Other questions:
  • Find the equivalent expression to 3(4m-2) -2(m+5)
    15·1 answer
  • A electrician charges $45 per hour and spends $20 a day on gasoline.Write an algebraic expression to represent his earnings for
    11·2 answers
  • Y=9x-9<br> Y=9<br> How do u solve dis ¿-¿
    13·2 answers
  • A square is shown below. Which expression can be used to find the area, in square units, of the shaded triangle in the square?
    10·1 answer
  • Which speed is the fastest?
    7·2 answers
  • Choose the like term of - 3 xy form:<br><br>A. -37<br>B. - 3 y z<br>C. yx<br>C. None of these​
    5·1 answer
  • According to the chart of holly complained to their mother That her stomach hurt and she could not breathe, which organism is t
    6·1 answer
  • Simplify the problem.
    8·1 answer
  • What is the volume?<br> 12ft<br> 15ft<br> 7ft
    7·2 answers
  • ANSWER USING STEPS: y=2/3x-5
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!