There are three types of
wind load or wind forces.
<span>Uplift load is the first one;
this is when the wind flow pressures create a strong lifting effect. Wind flow under the roof pushes upward, while
wind flow over the roof goes upward.</span>
Answer:
B. A covalent bond has a lower potential energy than the two separate atoms.
Explanation:
<em>Identify the correct statement. </em>
<em>A. It is not possible for two atoms to share more than two electrons.</em> FALSE. Atoms also can share 4 electrons (double bond) or 6 electrons (triple bond).
<em>B. A covalent bond has a lower potential energy than the two separate atoms.</em> TRUE.
<em>C. Single bonds are shorter than double bonds.</em> FALSE. Single bonds are longer than double bonds.
<em>D. A covalent bond is formed through the transfer of electrons from one atom to another.</em> FALSE. In covalent bonds, electrons are shared, not transferred from one atom to another.
<em>E. A pair of electrons involved in a covalent bond are sometimes referred to as lone pairs.</em> FALSE. Lone pairs are those that do not participate in a bond.
We are given with a compound, Zinc (Zn) having a 1.7 x 10
^23 atoms. We are tasked to solve for it's corresponding mass in g. We need to
find first the molecular weight of Zinc, that is
Zn= 65.38 g/mol
Not that 1 mol=6.022x10^{23} atoms, hence,
1.7 x 10 ^23 atoms x 1 mol/6.022x10^{23} atoms x65.38
g/ 1mol
=18.456 g of Zn
Therefore, the mass of Zinc 18.456 g