1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
3 years ago
10

Match each expression with its equivalent expression.

Mathematics
1 answer:
Klio2033 [76]3 years ago
5 0

Answer:

a -> 3

b -> 4

c -> 1

d -> 5

e -> 2

Step-by-step explanation:

We apply the properties to solve this question.

a. √4x^2y^4

\sqrt{4x^2y^4} = \sqrt{4}\sqrt{x^2}\sqrt{y^4} = 2xy^2

So a -> 3

b. √8x^2y

\sqrt{8x^2y} = \sqrt{8}\sqrt{x^2}\sqrt{y} = \sqrt{4*2}x\sqrt{y} = \sqrt{4}\sqrt{2}x\sqrt{y} = 2x\sqrt{2}\sqrt{y} = 2x\sqrt{2y}

So b -> 4

c. √4x^2y

\sqrt{4x^2y} = \sqrt{4}\sqrt{x^2}\sqrt{y} = 2x\sqrt{y}

So c -> 1

d. √16xy^2

\sqrt{16xy^2} = \sqrt{16}\sqrt{x}\sqrt{y^2} = 4\sqrt{x}y = 4y\sqrt{x}

So d -> 5

e. √8xy^2

\sqrt{8xy^2} = \sqrt{8}\sqrt{x}\sqrt{y^2} = \sqrt{4*2}\sqrt{x}y = \sqrt{4}\sqrt{2}\sqrt{x}y = 2y\sqrt{2}\sqrt{x} = 2y\sqrt{2x}

So e -> 2

You might be interested in
The given lengths are two sides of a right triangle. All three side lengths of the triangle are integers, and together they form
mel-nik [20]
The correct answer is “A” 40,leg
8 0
3 years ago
Which of the following are solutions to the equation below?
sladkih [1.3K]

Answer:

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

                  x=3,\:x=-\frac{1}{2}

Step-by-step explanation:

considering the equation

2x^2\:-\:4x\:-\:3\:=\:x

solving

2x^2\:-\:4x\:-\:3\:=\:x

2x^2-4x-3-x=x-x

2x^2-5x-3=0

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=2,\:b=-5,\:c=-3:\quad x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}

solving

x=\frac{-\left(-5\right)+\sqrt{\left(-5\right)^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}

x=\frac{5+\sqrt{\left(-5\right)^2+4\cdot \:2\cdot \:3}}{2\cdot \:2}

x=\frac{5+\sqrt{49}}{2\cdot \:2}

x=\frac{5+7}{4}

x=3

also solving

x=\frac{-\left(-5\right)-\sqrt{\left(-5\right)^2-4\cdot \:2\left(-3\right)}}{2\cdot \:2}

x=\frac{5-\sqrt{\left(-5\right)^2+4\cdot \:2\cdot \:3}}{2\cdot \:2}

x=\frac{5-\sqrt{49}}{4}

x=-\frac{2}{4}

x=-\frac{1}{2}

Therefore,

                 \mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

                  x=3,\:x=-\frac{1}{2}

7 0
3 years ago
Please help this is dew in 20 minutes
daser333 [38]

Answer:

It would be A.

You can trust me because a right angle is 90 degrees, so you would add the two angles.

4 0
3 years ago
Read 2 more answers
The number of people in thousands who own a cell phone is a function of the time in years starting in 1990 where p(t) = 20(1.075
Julli [10]
Try to look it up tbh
4 0
3 years ago
Calculate the volume of a cylinder, radius 12.5 cm and height 14 cm
Morgarella [4.7K]
\bf \textit{volume of a cylinder}\\\\
V=\pi r^2 h\quad 
\begin{cases}
r=radius\\
h=height\\
-----\\
r=12.5\\
h=14
\end{cases}\implies V=\pi \cdot 12.5^2\cdot 14
6 0
4 years ago
Other questions:
  • Need Help with # 16...............................
    13·2 answers
  • Determine x:<br> X<br> 2<br> 47°
    15·1 answer
  • Two angles are vertical angles. One angle is 2x the other angle is labeled (x+30). Find the value of x
    12·1 answer
  • If x = 2 and y = 4, then (2x + 3y) ÷ 4 - 2 =
    7·2 answers
  • If my principal is 2455 Marie is 3% in my interest is for 441.90 what is my time
    6·1 answer
  • 5,256 divide 52 and show your work
    6·1 answer
  • Tina buys a briefcase online for 62.95. If shipping and handling are an additional 20% of the price, how much shipping and handl
    10·1 answer
  • Find the slope.
    14·2 answers
  • Please Help With all 3! Will Give 100 Points + Brainliest!
    8·1 answer
  • A star sits at the top of a 27 foot tall christmas tree. the star is seen by a child who is standing 11 feet away from the tree.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!