1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
3 years ago
14

Is this a proportional relationship? y = x + 4

Mathematics
1 answer:
Gekata [30.6K]3 years ago
8 0

Answer:

no it is not a proportional relationship

You might be interested in
A triangle has vertices at (2, 3), (-4, 5), and (-3, 4). What are the coordinates of the vertices
elena-s [515]

(2,3) \longrightarrow (2+1, 3-3)=\boxed{(3,0)}\\(-4,5) \longrightarrow (-4+1, 5-3)=\boxed{(-3, 2)}\\(-3,4) \longrightarrow (-3+1, 4-3)=\boxed{(-2, 1)}

3 0
2 years ago
Given that CFE = CFA, CFB = 68, and EFD = 62, find the measure of AFD HURRY PLEASE, IM TIMED!!!
Margarita [4]

Answer:

D

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
Which expression is a trinomial?<br> 2x² + 2x - 4<br><br> 7x^3 - 2X<br><br> 50x<br><br> 2x²
andreev551 [17]
The first option: 2x^2+2x-4 since there are three terms
5 0
3 years ago
Read 2 more answers
Need help with 2 and 3 ASAP PLEASE SHOW WORK it’s due soon please
Deffense [45]

Answer:

The volume of the cone is 25.13, the other one is 167.55

Step-by-step explanation:

v = 1/3pi(2)^2(6)

simplify and divide the above.

v = 25.13

1/3pi(4)^2(10)

= 167.55

4 0
3 years ago
Other questions:
  • 8 out of every 20 spectators were girls. There were a total of 1560 spectators at the game. How many of the spectators were girl
    15·2 answers
  • Write 10+0.06+0.008 in word form
    13·2 answers
  • The koala is 72 meters tall.the zebra is three times as tall as the koala.the elephant is four times as tall as the zebra.how ta
    13·1 answer
  • If the sum of the measures of the angles of a polygon is 1,080 how many sides does the polygon have?
    8·1 answer
  • How much does Alicia have left?
    13·1 answer
  • 2)Whitney is shopping for party supplies. She finds a package of 10 plates, 16 napkins, and a package of 8 cups. What is the lea
    13·1 answer
  • Three is less than the sum of a number 8 and 4
    9·1 answer
  • 784÷8 estimate please help​
    7·2 answers
  • A line passes through the points (1, 4) and (3, –4). Which is the equation of the line?
    11·2 answers
  • Marking as brainliest, if u answer this an comment ur inst
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!