Answer:
B is the answer on edge
Step-by-step explanation:
ANSWER
or 
EXPLANATION
For 
We make y the subject to obtain,

We can easily graph this function, because we just have to transform the graph of
by shifting the intercept up to
.
As for the straight line,
,
We find the intercepts as follows,
When
.
When
.
We plot the points
and
.
We now draw the two graphs on the same graph sheet. The intersection of the two graphs gives the solution to be
or 
See graph
well, let's first notice, all our dimensions or measures must be using the same unit, so could convert the height to liters or the liters to centimeters, well hmm let's convert the volume of 1000 litres to cubic centimeters, keeping in mind that there are 1000 cm³ in 1 litre.
well, 1000 * 1000 = 1,000,000 cm³, so that's 1000 litres.
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=1000000~cm^3\\ h=224~cm \end{cases}\implies \stackrel{cm^3}{1000000}=\pi r^2(\stackrel{cm}{224}) \\\\\\ \cfrac{1000000}{224\pi }=r^2\implies \sqrt{\cfrac{1000000}{224\pi }}=r\implies \cfrac{1000}{\sqrt{224\pi }}=r\implies \stackrel{cm}{37.7}\approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D1000000~cm%5E3%5C%5C%20h%3D224~cm%20%5Cend%7Bcases%7D%5Cimplies%20%5Cstackrel%7Bcm%5E3%7D%7B1000000%7D%3D%5Cpi%20r%5E2%28%5Cstackrel%7Bcm%7D%7B224%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%3Dr%5E2%5Cimplies%20%5Csqrt%7B%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Ccfrac%7B1000%7D%7B%5Csqrt%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B37.7%7D%5Capprox%20r)
now, we could have included the "cm³ and cm" units for the volume as well as the height in the calculations, and their simplication will have been just the "cm" anyway.
Expected value of the bet is
the sum of the products of value of outcome and its probability,
less the amount paid to place the bet.
Outcomes value probability
win 225 1/4
lose 0 3/4
cost of bet = 40
So expected value of bet
E[X]=225*(1/4)+0*(3/4)-40
=56.25-40
=16.25
This means that in the long run, gambler will win, since the expected value is positive. (does NOT mean she will win in the next bet!)
Answer: 1100 grams
Step-by-step explanation:
5kg=5000g
5000g-600g=4400g
4400g/4=1100g