Answer:
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
Step-by-step explanation:
Given function:
y =
we know
= ln(A) - ln(B)
thus,
y = 
or
also,
ln(Aⁿ) = n × ln(A)
thus,
y = 
therefore,
![\frac{dy}{dx}=[(\frac{3}{2})\times\frac{1}{(6-x)}\times(0 - 1)] - [ (\frac{2}{3})\times\frac{1}{x}\times1]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5B%28%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%286-x%29%7D%5Ctimes%280%20-%201%29%5D%20-%20%5B%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ctimes%5Cfrac%7B1%7D%7Bx%7D%5Ctimes1%5D)
or

or
![\frac{dy}{dx}=-[(\frac{3(3x)+2\times2(6-x)}{2(6-x)\times(3x)})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B3%283x%29%2B2%5Ctimes2%286-x%29%7D%7B2%286-x%29%5Ctimes%283x%29%7D%29%5D)
or
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
Answer:
B. 18
Step-by-step explanation:
The 4 machines can produce x units in 6 days. This means they have a daily total rate of x/6 units per day.
Since the machines are similar and that they work at the same rate, this means that the individual rates of each machine would be x/6/4 = x/24 units per day.
Now we are looking at producing 3x units in 4 days. This means that we want to produce 3x/4 units in a single day. Now, since each machine would work at a rate of x/24, we need to know the number of machines we need. To know this number, we simply divide what is to be achieved by the individual rate:
This is 3x/4 divided by x/24. This mathematically means 3x/4 * 24/x = 18 machines
Answer:
There are 13 cards for each suit so the first fraction is 13/52 and the next one is 13/51 as there is no replacement for the first card you pulled.
Multiplying them you get: 13/52*13/51= 169/2652,
Then you divide both sides by 13 to get: 13/204
So, the answer is C.
I hope this helps!
Answer:
Step-by-step explanation:
A) Let x represent acres of pumpkins, and y represent acres of corn. Here are the constraints:
x ≥ 2y . . . . . pumpkin acres are at least twice corn acres
x - y ≤ 10 . . . . the difference in acreage will not exceed 10
12 ≤ x ≤ 18 . . . . pumpkin acres will be between 12 and 18
0 ≤ y . . . . . the number of corn acres is non-negative
__
B) If we assume the objective is to maximize profit, the profit function we want to maximize is ...
P = 360x +225y
__
C) see below for a graph
__
D) The profit for an acre of pumpkins is the highest, so the farmer should maximize that acreage. The constraint on the number of acres of pumpkins comes from the requirement that it not exceed 18 acres. Then additional profit is maximized by maximizing acres of corn, which can be at most half the number of acres of pumpkins, hence 9 acres.
So profit is maximized for 18 acres of pumpkins and 9 acres of corn.
Maximum profit is $360·18 +$225·9 = $8505.
Here’s the first few and you can do the rest with the same principles. If you need more help with the last ones then let me know