Answer:
Horizontal distance = 0 m and 6 m
Step-by-step explanation:
Height of a rider in a roller coaster has been defined by the equation,
y = 
Here x = rider's horizontal distance from the start of the ride
i). 

![=\frac{1}{3}[x^{2}-2(3x)+9-9+24]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5Bx%5E%7B2%7D-2%283x%29%2B9-9%2B24%5D)
![=\frac{1}{3}[(x^{2}-2(3x)+9)+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x%5E%7B2%7D-2%283x%29%2B9%29%2B15%5D)
![=\frac{1}{3}[(x-3)^2+15]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5B%28x-3%29%5E2%2B15%5D)

ii). Since, the parabolic graph for the given equation opens upwards,
Vertex of the parabola will be the lowest point of the rider on the roller coaster.
From the equation,
Vertex → (3, 5)
Therefore, minimum height of the rider will be the y-coordinate of the vertex.
Minimum height of the rider = 5 m
iii). If h = 8 m,


(x - 3)² = 9
x = 3 ± 3
x = 0, 6 m
Therefore, at 8 m height of the roller coaster, horizontal distance of the rider will be x = 0 and 6 m
Answer:
6 5/12
Step-by-step explanation:
2 2/3 as a mixed number is 8/3
3 3/4 as a mixed number is 15/4
To make the 2 fractions have a common denominator, they become:
32/12 and 45/12
to add them up it will be: 77/12 which can be written as 6 5/12
So, the sphere went from 1.2 meters to 1.4 meters.
The radius will always be half of the diameter. So it went from .6 to .7.
Let's divide and see what percent .7 is of .6.
.7÷.6=1.166666666(repeating 6).
This means, it increased by about 16.7%, since it was not doubling, just going up.
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0