Second answer if it still helps
Answer:
Slope= 0.20
Y-intercept=12.50
Equation= Y=0.20+12.50
Step-by-step explanation:
Answer:
The solutions are linearly independent because the Wronskian is not equal to 0 for all x.
The value of the Wronskian is 
Step-by-step explanation:
We can calculate the Wronskian using the fundamental solutions that we are provided and their corresponding the derivatives, since the Wroskian is defined as the following determinant.

Thus replacing the functions of the exercise we get:

Working with the determinant we get

Thus we have found that the Wronskian is not 0, so the solutions are linearly independent.
First, use distributive property on the right half.
2 * 5 = 10
2 * 2n = 4n
4n - 9 = 10 + 4n
Add 9 to both sides
4n = 19 + 4n
Subtract 4n from both sides
0 = 19
But thats not true. Therefore, there is no solution.
The relationship between x and y is represent as:
Since, the relationship is linear.
The standard form of equation of line is:

Consider any two set x and y values from the given relationship.
Let (-2, 10) and (-1,7.5)


The equation of the linear relationship between x and y is:
y = -2.5(x + 2) + 10
Now, to check that the point (9, -17.5) lies on the represented relationship between x and y
Substitute x = 9 and y = -17.5 in the equation y = -2.5(x + 2) + 10
y = -2.5(x + 2) + 10
-17.5 = -2.5(9 + 2) + 10
-17.5 = -2.5(11) + 10
-17.5 = -27.5 + 10
-17.5 = -17.5
Thus, LHS = RHS
Hence the point (9, -17.5) lie on the given linear relationship between x and y.
Answer: The point (9, -17.5) lie on the given linear relationship between x and y.