Answer:
70 units³
Step-by-step explanation:
Volume = Area × Height
=10×7
=70
We will call an adult ticket <em>a</em>, and a child ticket <em>c</em>.
Since they sold 60 tickets in total, we can form the equation:
a + c = 60
We can also say that the sum of money from the adult tickets and child tickets combined is 460.
Thus we can say
11a + 6c = 460
Now, we must solve our system.
a + c = 60
11a + 6c = 460
6a + 6c = 360
11a + 6c = 460
-5a = -100
a = 20
Thus, (20) + c = 60
c = 40
a = 20 and c = 40
Answer:
j+1
Step-by-step explanation:
j/k + 1/k = ?/k
Since the denominator is the same, we can add the numerators
j/k + 1/k = ?/k
(j+1)/k = ?/k
Answer:
1. 30°
2.90°
3. 12 units
Step-by-step explanation:
I can't believe there's nothing confirming that this is a parallelogram/a rhombus?! Assuming is awful, and I wish you could say you can't know for sure lol but for the sake of this answer, let's just call it a rhombus. (There was probably some context elsewhere that you didn't put over here, hopefully.)
1.
The reason I say this is: in a rhombus, the diagonals bisect the angles. This means that the diagonals split the angles they meet into two equal parts. That way, it would make sense. m∠QPR=m∠SPR=30°.
2.
If it is a rhombus, the diagonals are perpendicular to each other, so m∠QTP should be 90°.
3.
Diagnonals in a rhombus (and in any parallelogram) bisect each other, so PT=TR=6, and RP=PT+TR=12 units.
Sorry if this is all dreadfully wrong, and I hope I helped you!
If it takes one person 4 hours to paint a room and another person 12 hours to
paint the same room, working together they could paint the room even quicker, it
turns out they would paint the room in 3 hours together. This can be reasoned by
the following logic, if the first person paints the room in 4 hours, she paints 14 of
the room each hour. If the second person takes 12 hours to paint the room, he
paints 1 of the room each hour. So together, each hour they paint 1 + 1 of the 12 4 12
room. Using a common denominator of 12 gives: 3 + 1 = 4 = 1. This means 12 12 12 3
each hour, working together they complete 13 of the room. If 13 is completed each hour, it follows that it will take 3 hours to complete the entire room.
This pattern is used to solve teamwork problems. If the first person does a job in A, a second person does a job in B, and together they can do a job in T (total). We can use the team work equation.
Teamwork Equation: A1 + B1 = T1
Often these problems will involve fractions. Rather than thinking of the first frac-
tion as A1 , it may be better to think of it as the reciprocal of A’s time.
World View Note: When the Egyptians, who were the first to work with frac- tions, wrote fractions, they were all unit fractions (numerator of one). They only used these type of fractions for about 2000 years! Some believe that this cumber- some style of using fractions was used for so long out of tradition, others believe the Egyptians had a way of thinking about and working with fractions that has been completely lost in history.