Ans: -4.3
Integers are all whole numbers negative, positive, and 0
Hope this helped :)
Answer:
D) cot(C) = 1/2.
Step-by-step explanation:
We can go through each choice and examine is validity.
Choice A)
We have:

Recall that secant is the ratio of the hypotenuse to the adjacent.
With respect to B, the adjacent is 6 and the hypotenuse is 7.
Therefore, sec(B) should be 7/6 instead.
A is incorrect.
Choice B)
We have:

Cotangent is the ratio of the adjacent side to the opposite.
With respect to B, the adjacent side is 6 and the opposite side is 3.
Therefore, cot(B) = 6/3 = 2.
B is incorrect.
Choice C)
C is incorrect for the reasons listed in A.
Choice D)
We have:

Again, cotangent is the ratio of the adjacent side to the opposite.
With respect to C, the adjacent side is 3 and the opposite side is 6.
So, cot(C) = 3/6 = 1/2.
Therefore, D is the correct choice!
Answer:
= - 21
+ 6x² + 1
Step-by-step explanation:
Differentiate each term using the power rule
(a
) = na
Given
y = - 3
+ 2x³ + x , then
= (7 × - 3 )
+ (3 × 2)x² + (1 × 1 )
= - 21
+ 6x² + 1
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
48/7 + 6/7 if your having any other trouble let me no