Answer:
To select a <u>stratified</u> random sample, first classify the population into groups of similar individuals, then choose a separate SRS in each group and combine these SRS to form the full sample
Step-by-step explanation:
Stratified random sampling involved dividing the population into small groups of similar individuals (called strata) and then from among those groups, a stratified random sample is selected and then, all these samples are combined to form the full sample. Hence, the missing word in this sentence is <u>stratified.</u>
Check the picture below.
![\stackrel{\textit{\Large Areas}}{\stackrel{triangle}{\cfrac{1}{2}(6)(6)}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}\pi (3)^2}}\implies \boxed{18+4.5\pi} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{pythagorean~theorem}{CA^2 = AB^2 + BC^2\implies} CA=\sqrt{AB^2 + BC^2} \\\\\\ CA=\sqrt{6^2+6^2}\implies CA=\sqrt{6^2(1+1)}\implies CA=6\sqrt{2} \\\\\\ \stackrel{\textit{\Large Perimeters}}{\stackrel{triangle}{(6+6\sqrt{2})}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}2\pi (3)}}\implies \boxed{6+6\sqrt{2}+3\pi}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%286%29%286%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%283%29%5E2%7D%7D%5Cimplies%20%5Cboxed%7B18%2B4.5%5Cpi%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bpythagorean~theorem%7D%7BCA%5E2%20%3D%20AB%5E2%20%2B%20BC%5E2%5Cimplies%7D%20CA%3D%5Csqrt%7BAB%5E2%20%2B%20BC%5E2%7D%20%5C%5C%5C%5C%5C%5C%20CA%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B6%5E2%281%2B1%29%7D%5Cimplies%20CA%3D6%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeters%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%286%2B6%5Csqrt%7B2%7D%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D2%5Cpi%20%283%29%7D%7D%5Cimplies%20%5Cboxed%7B6%2B6%5Csqrt%7B2%7D%2B3%5Cpi%7D)
notice that for the perimeter we didn't include the segment BC, because the perimeter of a figure is simply the outer borders.
1. sqrt 52 = 7.211 rounds to 7
2. irrational number
3. sqrt 441 = 21....rational
4. 12^2 + 3^2 = h^2
144 + 9 = h^2
153 = h^2
sqrt 153 = h
12.4 = h <===
5. 6^2 + b^2 = 18^2
36 + b^2 = 324
b^2 = 324 - 36
b^2 = 288
b = sqrt 288
b = 16.97 rounds to 17 <==
6. 39^2 + 52^2 = c^2
1521 + 2704 = c^2
4225 = c^2
sqrt 4225 = c
65 = c
(39 + 52) - 65 = 91 - 65 = 26 miles shorter <==
7. 4^2 + b^2 = 16^2
16 + b^2 = 256
b^2 = 256 - 16
b^2 = 240
b = sqrt 240
b = 15.49 rounds to 15.5 <==
8. ?
Answer:
maya 6528
Step-by-step explanation:
$0rry so no alam