Solve for <em>x</em> when √(<em>x</em> ² - 4) = 1 :
√(<em>x</em> ² - 4) = 1
<em>x</em> ² - 4 = 1
<em>x</em> ² = 5
<em>x</em> = ±√5
We're looking at <em>x </em>≤ 0, so we take the negative square root, <em>x</em> = -√5.
This means <em>f</em> (-√5) = 1, or in terms of the inverse of <em>f</em>, we have <em>f</em> ⁻¹(1) = -√5.
Now apply the inverse function theorem:
If <em>f(a)</em> = <em>b</em>, then (<em>f</em> ⁻¹)'(<em>b</em>) = 1 / <em>f '(a)</em>.
We have
<em>f(x)</em> = √(<em>x</em> ² - 4) → <em>f '(x)</em> = <em>x</em> / √(<em>x</em> ² - 4)
So if <em>a</em> = -√5 and <em>b</em> = 1, we get
(<em>f</em> ⁻¹)'(1) = 1 / <em>f '</em> (-√5)
(<em>f</em> ⁻¹)'(1) = √((-√5)² - 4) / (-√5) = -1/√5
The sign must be negative; see the attached plot, and take note of the negatively-sloped tangent line to the inverse of <em>f</em> at <em>x</em> = 1.
diameter (d) = 2 · r
Circumference (C) = 2 π · r → C = π · d → d = 
Answer:
C
Step-by-step explanation:
It is C because the 2 is attached to the variable Y
The area of a square would be = A= a²
Answer:
Randomized block design
Step-by-step explanation:
In the scenario described above, the subjects which are the different car types are grouped into fixed units of 4 called blocks with each unit then assigned randomly to a particular treatment condition, which are the 4 different types of tire. In the end, the mean mileage for each block is taken and compared to that of the other blocks. This type of research design improves the reliability of the result obtained as it also eliminates the occurrence of systematic error in the course of our experiment.