The disk method will only involve a single integral. I've attached a sketch of the bounded region (in red) and one such disk made by revolving it around the y-axis.
Such a disk has radius x = 1/y and height/thickness ∆y, so that the volume of one such disk is
π (radius) (height) = π (1/y)² ∆y = π/y² ∆y
and the volume of a stack of n such disks is

where
is a point sampled from the interval [1, 5].
As we refine the solid by adding increasingly more, increasingly thinner disks, so that ∆y converges to 0, the sum converges to a definite integral that gives the exact volume V,


Answer: The image wont lode, sorry.
Step-by-step explanation:
Ellie: 20*15=300
Heather: 18*18= 324
Heather's floor model is greater by 24 feet
Answer: (0.120)(x) = 78 ; x is 65
Step-by-step explanation: