Answer: 65,780
Step-by-step explanation:
When we select r things from n things , we use combinations and the number of ways to select r things = 
Given : The total number of playing cards in a deck = 52
The number of different five-card hands possible from a deck = 2,598,960
In a deck , there are 26 black cards and 26 red cards.
The number of ways to select 5 cards from 26 cards = 

Hence, the number of different five-card hands possible from a deck of 52 playing cards such that all are black cards = 65,780
Total number of hours = 15
Let the hours spent tutoring french be x.
Therefore hours spent on scooping ice cream = (15 - x)
Amount: Tutoring french is $15 an hour, total for x hours = 15x
For scooping ice cream it is $10 an hour 10*(15 - x) = 150 - 10x
To make more than $180
15x + (150 - 10x) > 180
15x + 150 - 10x > 180
15x - 10x > 180 - 150
5x > 30
x > 30/5
x > 6
So he needs to tutor more than 6 hours in order to make more than $180
Not sure about the second question, but for the first one x=21
I’ve never heard of a similarity statement, so sorry about that. Good luck man!
<span>1. X = -2 or 3
2. X = -5 or 3
3. X = -2.5 or 3
4. X = -4 or 2
5. X = 3 or -3
6. X = -4 or 2
I am assuming that you're looking for the intersections between the two equations for each problem. The general approach to each of the given problems is to solve both equations for y (only need to do this with problems 4 through 6 since you've already been given the equations solved for y with problems 1 through 3). After you have two equations solved for y, simply set them equal to each other and then manipulate until you have a quadratic equation of the form:
Ax^2 + Bx + C = 0
After you've gotten your quadratic equation, just find the roots to the equation and you'll know both X values that will result in the same Y value as the equations you've been given for each problem. I'm personally using the quadratic formula for getting the desired roots, but you can also factor manually. So let's do it.
1. y = x+2, y = x^2 - 4
Set the equations equal to each other
x + 2 = x^2 - 4
2 = x^2 - x - 4
0 = x^2 - x - 6
Using the quadratic formula with A=1, B=-1, C=-6, you get the solutions -2 and 3.
2. y = x^2 + 3x - 1, y = x+14
Same thing, set the equations equal to each other.
x^2 + 3x - 1 = x + 14
x^2 + 2x - 1 = 14
x^2 + 2x - 15 = 0
Use the quadratic formula with A=1, B=2, C=-15. Roots are -5 and 3.
3. y = 2x^2 + x - 7, y = 2x + 8
Set the equations equal to each other again.
2x^2 + x - 7 = 2x + 8
2x^2 - x - 7 = 8
2x^2 - x - 15 = 0
Quadratic formula with A=2, B=-1, C=-15, gives you the roots of -2.5 and 3
4. y = x(x + 3), y - x = 8
A little more complicated. Solve the second equation for y
y - x = 8
y = x + 8
Multiply out the 1st equation
y = x(x + 3)
y = x^2 + 3x
Now set the equations equal to each other
x + 8 = x^2 + 3x
8 = x^2 + 2x
0 = x^2 + 2x - 8
And use the quadratic formula with A=1, B=2, C=-8. Roots are -4, 2
5. y = -3x^2 - 2x + 5, y + 2x + 22 = 0
Solve the 2nd equation for y
y + 2x + 22 = 0
y + 22 = -2x
y = -2x - 22
Set equal to 1st equation
-2x - 22 = -3x^2 - 2x + 5
-22 = -3x^2 + 5
0 = -3x^2 + 27
Use the quadratic formula with A=-3, B=0, C=27, giving roots of 3 and -3
6. y + 6 = 2x^2 + x, y + 3x = 10
Solve the 1st equation for y
y + 6 = 2x^2 + x
y = 2x^2 + x - 6
Solve the 2nd equation for y
y + 3x = 10
y = -3x + 10
Set the solved equations equal to each other
2x^2 + x - 6 = -3x + 10
2x^2 + 4x - 6 = + 10
2x^2 + 4x - 16 = 0
Use the quadratic formula with A=2, B=4, C=-16, getting roots of -4 and 2.</span>