Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183

A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9
Answer:
5/8 of a cup
Step-by-step explanation:
What you do is you add 1/2 and 3/4 together.
1/2+3/4=5/4.
Noel used half of 5/4 so you would multiply it by 1/2
5/4*1/2=5/8 is your answer.
<h3>
Answer: 40</h3>
=================================================
Explanation:
JQ is longer than QN. We can see this visually, but the rule for something like this is the segment from the vertex to the centroid is longer compared to the segment that spans from the centroid to the midpoint.
See the diagram below.
The ratio of these two lengths is 2:1, meaning that JQ is twice as long compared to QN. This is one property of the segments that form when we construct the centroid (recall that the centroid is the intersection of the medians)
We know that JN = 60
Let x = JQ and y = QN
The ratio of x to y is x/y and this is 2/1
x/y = 2/1
1*x = y*2
x = 2y
Now use the segment addition postulate
JQ + QN = JN
x + y = 60
2y + y = 60
3y = 60
y = 60/3
y = 20
QN = 20
JQ = 2*y = 2*QN = 2*20 = 40
--------------
We have
JQ = 40 and QN = 20
We see that JQ is twice as larger as QN and that JQ + QN is equal to 60.
If you want to see if they are equivalent just substitute any number such as 2, so 2.5(2) = 5 and 2 + 5 = 7, so they are not equivalent (THIS IS TRUE UNLESS YOU DIDNT PUT THE X VALUE IN THE QUESTION)