Answer:
To satisfy the hypotheses of the Mean Value Theorem a function must be continuous in the closed interval and differentiable in the open interval.
Step-by-step explanation:
As f(x)=2x3−3x+1 is a polynomial, it is continuous and has continuous derivatives of all orders for all real x, so it certainly satisfies the hypotheses of the theorem.
To find the value of c, calculate the derivative of f(x) and state the equality of the Mean Value Theorem:
dfdx=4x−3
f(b)−f(a)b−a=f'(c)
f(x)x=0=1
f(x)x=2=3
Hence:
3−12=4c−3
and c=1.
Answer:
B
Step-by-step explanation:
Answer:
<h3>Hence required integers are 11 and 13</h3>
Let x an odd positive integer
Then, according to question
x^2 +(x+2)^2=290
2x^2 +4x−286=0
x^2 +2x−143=0
x ^2+13x−11x−143=0
(x+13)(x−11)=0
x=11 as x is positive
Hence required integers are 11 and 13
Step-by-step explanation:
Hope it is helpful....