Answer:
Acceleration
Explanation:
For example, if the acceleration is zero, then the velocity-time graph is a horizontal line (i.e., the slope is zero). If the acceleration is positive, then the line is an upward sloping line (i.e., the slope is positive).
Answer:
The second car must go with a speed of 63.43 m/sec
Explanation:
Speed V of lead car = 62.3 m/sec
Distance S = 55 laps = 55 ×400 meters=22000 m
We know
S = V × t
So,
t= S/V
We put values of S and V here, we get
t=22000/62.3
t= 353.1 sec
So in 353.1 sec the second car which is one lap behind - must go a distance of 55+1=56 laps or 56×400 m = 22400 meters to catch the lead car before it finishes.
i-e for second car
Distance S= 22400m
Time t = 353.1 sec
V= ?
using again
S=Vt
we get
V= S/t
V= 22400/353.1= 63.43 m/sec
When pushing a toy truck up an inclined plane, the force that makes the truck goes up is the force that the child uses to push the truck. (The force that pushes
Therefore the correct option is C.
Answer:
Explanation:
average speed is distance traveled over time
v = (50 + 30(1.5)) / (2 + 1.5) = 27.1428571...
v = 27 km/hr
Answer: the wavelenght is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m