Explanation:
Efficiency is defined as the ratio between the useful output over the total amount consumed. 
The fan does 500W of useful work while wasting 300 W. The total power consumption is 800 W (500 + 300).
Answer:
Learning the formula.multiply mass accelebrations.the force(F)required to move an object of mass(M) with an acceleration (a) is given by the formula F = m x a.so, force = mass multiplied by accelebration.
Answer:
F = 780 [N]
Explanation:
To solve this problem we must use newton's second law which tells us that the sum of forces on a body must be equal to the product of mass by acceleration
ΣF =m*a
where:
F = force [N] (units of Newtons)
m = mass = 2600 [kg]
a = acceleration = 0.3 [m/s²]
F = 2600*0.3
F = 780 [N]
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m